
Tutorial 5: Solution

1. P (B|A)
a1 a2

b1 0.5 0.5
b2 0.5 0.5

P (C|A)
a1 a2

c1 0.5 0.5
c2 0.5 0.5

P (B&C|A)

a1 a2
b1c1 0.25 0
b1c2 0.25 0.5
b2c1 0.25 0.5
b2c2 0.25 0

The joined link matrix describes a relationship not seen in the independent matrices.

2. (a) Joined 
0.25 0
0.25 0.5
0.25 0.5
0.25 0

[ 0.1
0.2

]
=


0.025
0.125
0.125
0.025


(b) Independent (both B and C) [

0.5 0.5
0.5 0.5

] [
0.1
0.2

]
=

[
0.15
0.15

]
The joined network propagates information, but the independent does not.

3. (a) Joined

[1 1 0 0]


0.25 0
0.25 0.5
0.25 0.5
0.25 0

 = [0.5 0.5]

(b) Independent

[1 0]

[
0.5 0.5
0.5 0.5

]
= [0.5 0.5]

4. The moral graph has three new arcs. There is no need for further triangulation.

The cliques are as follows:

DOC493: Intelligent Data Analysis and Probabilistic Inference Tutorial 5 2



Grouping the nodes in cliques gives us four sets as follows: [AT], [SLB], [TLBD], [TLX]. We now need
to define the running intersection property. This means joining the cliques such that for any clique those
variables which appear higher up in the tree appear in its immediate parent node. We can do this by
breadth first search starting from a clique containing a root of the original network. There is no unique
solution, here is one ordering:

There are several possible join trees that obey the running intersection property with this ordering

From now on we use the first tree.
We now need to determine the X set variables. We do this by finding the variables in each clique for
which the parents are in the same clique. The potential functions are allocated on the basis of the X
variables in each clique. Prior probabilities go to the clique where their variable appears. As these are
roots of the original tree they will belong to exactly one clique. Conditional probabilities go to the clique
containing both the parents and the children.

Clique Wi Si Ri Xi Ψ

1 SLB SLB SLB P (S)P (L|S)P (B|S)
2 LBTD BL TD D P (D|T&L&B)
3 LTX LT X X P (X|T&L)
4 TA T A AT P (A)P (T |A)

Propagation with nothing instantiated:

Clique S R Ψ (initially) P (R|S) P (S)

1 SLB P (S)P (L|S)P (B|S) P (S&L&B)
2 BL TD P (D|B&L&T ) P (T&D|B&L) P (B&L)
3 TL X P (X|T&L) P (X|T&L) P (T&L)
4 T A P (A)P (T |A) P (A|T ) P (T )

We note that during initialisation we can calculate P (R|S) using Ψ/ΣRΨ in every clique.
Clique 1: P (R|S) = P (SLB) = Ψ (since ΣSLBP (SLB) evaluates to 1)
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Clique 3: P (R|S) = P (X|TL), (this is the same as Ψ/ΣRΨ since ΣXP (X|TL) evaluates to 1 every-
where)
Clique 4: P (R|S) = P (A|T ) = P (A)P (T |A)/P (T ) (Bayes Theorem) = Ψ/ΣAΨ
Clique 2: We want to show that the potential function initialises to P (R|S) = P (TD|BL).
We knowP (DBLT ) = P (TD|BL)P (BL) = P (D|BLT )P (BLT ) = P (D|BLT )P (BL)P (T |BL) =
P (D|BLT )P (BL)P (T )
Remember that we are considering the special case where nothing has been instantiated. Thus T is not
dependent on BL. This allows us to substitute P (T ) = P (T |BL) in this case.
Thus we have that P (TD|BL) = P (D|BLT )P (T ).
Although we set the potential function to P (D|BLT ) which is not the same as P (TD|BL), during the
initialisation there will be a λ message arriving from clique 4. This λ evidence is ΣAP (A)P (T |A) =
P (T ). So once the λ evidence has been propagated the potential function of clique 2 will beP (D|BLT )P (T )
and it will be equal to P (TD|BL).

To conclude the initialisation there is no λ evidence from clique 3 since ΣXP (X|T&L) evaluates to all
1s. The λ evidence from 2 to 1 ΣTDP (T&D|B&L) again evaluates to no evidence.

π evidence: This is the P (S) value and is calculated by marginalising the joint probability of the parent
node P (R&S) = P (R|S)P (S), starting at the top and working down.

Propagation with D instantiated:

Clique S R Ψ (initially) P (R|S) P (S)

1 SLB P (S)P (L|S)P (B|S) P (S&L&B)
2 BL T P (B&L&T ) P (T |B&L) P (B&L)
3 TL X P (X|T&L) P (X|T&L) P (T&L)
4 T A P (A)P (T |A) P (A|T ) P (T )

The only change is in clique 2. With D instantiated the given conditional probability matrix reduces into
a joint evidence P (B&L&T ) which depends on the state of D. We can now calculate P (T |B&L) by
dividing out the evidence for B&L thus P (T |B&L) = P (B&L&T )/P (B&L) = Ψ/ΣRΨ (as normal)

The λ evidence from below is the same as before. However, this time there will also be λ evidence from
clique 2 to clique 1. This is computed as ΣTΨ(Cl2).

The π evidence is calculated as before.
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