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Mathematical Concepts in Machine Learning

» Linear algebra and matrix decomposition

» Differentiation

» Optimization

v

Integration

v

Probability theory and Bayesian inference

» Functional analysis
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Outline

Introduction

Differentiation

Integration
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Overview

Introduction
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Feedforward Neural Network
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Feedforward Neural Network

Ab
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Feedforward Neural Network
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Feedforward Neural Network

Ab
» Training a neural network means parameter optimization:
Typically via some form of gradient descent
» Challenge 1: Differentiation. Compute gradients of a loss
function with respect to neural network parameters A, b
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Feedforward Neural Network

Ab
» Training a neural network means parameter optimization:
Typically via some form of gradient descent
» Challenge 1: Differentiation. Compute gradients of a loss
function with respect to neural network parameters A, b

» Computing statistics (e.g., means, variances) of predictions
» Challenge 2: Integration. Propagate uncertainty through a
neural network
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Background: Matrix Multiplication

» Matrix multiplication is not

commutative, i.e., AB # BA
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Background: Matrix Multiplication

» Matrix multiplication is not

commutative, i.e., AB # BA

» When multiplying matrices, the “neighboring” dimensions have

to fit:
A B = C
S~ ~——
nxk k% nx
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Background: Matrix Multiplication

» Matrix multiplication is not

commutative, i.e., AB # BA

» When multiplying matrices, the “neighboring” dimensions have

to fit:
A B = C
S~ ~——
nxk kxm nxin
yi:Z]‘Aijxj y = np.einsum(’ij, j’, A, x)
C=AB C = A.dot(B)
Cij:ZkAikBkj C = np.einsum(’ik, kj’, A, B)

Mathematics for Machine Learning Marc Deisenroth @Deep Learning Indaba, September 10, 2017



Curve Fitting (Regression) in Machine Learning (1)

Polynomial of degree 5

O Data
——— Maximum likelihood estimate

5 o 5
» Setting: Given inputs x, predict outputs/targets y
» Model f that depends on parameters 6. Examples:
» Linear model: f(x,0) = 0'x, x,0ecRP
» Neural network: f(x,0) = NN(x,0)
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Curve Fitting (Regression) in Machine Learning (2)

» Training data, e.g., N pairs (x;, ;) of s Palynomial of degree s
inputs x; and observations y;

» Training the model means finding
parameters 0%, such that f(x;, %) ~ y;
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Curve Fitting (Regression) in Machine Learning (2)

» Training data, e.g., N pairs (x;, ;) of s Palynomial of degree s
inputs x; and observations y;

» Training the model means finding
parameters 0%, such that f(x;, %) ~ y;

» Define a loss function, e.g., Zf\i 1(yi — f(x;,0))?, which we want to
optimize

» Typically: Optimization based on some form of gradient descent
» Differentiation required
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Overview

Differentiation
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Differentiation: Outline

1. Scalar differentiation: f : R — R
2. Multivariate case: f : RN — R
3. Vector fields: f : RN — RM

4. General derivatives: f : RM*N —, RPxQ
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Scalar Differentiation f : R — R

» Derivative defined as the limit of the difference quotient

) 4 i SO — ()

dx  h—0 h
» Slope of the secant line through f(x) and f(x + h)
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Examples
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Rules

» Sum Rule

Mathematics for Machine Learning

(f(x) +g(x)’

_df 4

= f) g = P+

Marc Deisenroth
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Rules

» Sum Rule

(F) +5(0)) = F1x) +g/(x) = 2 + 98

» Product Rule

(F@3() = (0300 + FR)g' ) = L o) + ()58
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Rules

» Sum Rule

» Product Rule

» Chain Rule

(50 = (W) = Nf () =
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Example: Chain Rule
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Example: Chain Rule

z=f(x) ="
(gof)(x) = (1 —tanh®(x"))px""}
dg/df dffdx
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f:RN >R

X1
y=f(x), x=|:|eRN

XN
» Partial derivative (change one coordinate at a time):

f(xll---/xifll xi+h1xi+ll'--/xN)*f(x)
0x;  h—0 h
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f:RN >R

XN
» Partial derivative (change one coordinate at a time):

flxa, . xio, X+ 0, X, xN) — f(x)
0x;  h—0 h

» Jacobian vector (gradient) collects all partial derivatives:

df of of 1xN
Note: This is a row vector.
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Example

Mathematics for Machine Learning

f:R* >R

fx1,x2) = X%XQ + xlxg eR
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Example

f:R* >R

flx1,x) =3x + x5 e R

» Partial derivatives:

6 (x‘l/ xZ) 3
f@)c] ‘2X]X2+x2

a (X], XZ)

7']( / = xZ] + 3X] x22

Mathematics for Machine Learning Marc Deisenroth @Deep Learning Indaba, September 10, 2017

17



Example

f:R* >R

flx1,x) =3x + x5 e R

» Partial derivatives:

6]“(;6;,1362) = 2x1X2 + X3
5]‘(;631(;362) = x% + 3x1x§
» Gradient:
Zi _ [6f(g;;xz) 6f(g;Z'Xz)] - [lexz +x5 x2 +3x1x§] c R1X2.
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Rules

» Sum Rule

» Product Rule

» Chain Rule

%(gOf)(x) = aﬁx(g(f(x))) _ gigi
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Example: Chain Rule

» Consider the function
L(e) = 1fe|> = LeTe
e=y— Ax, xeRN,AeIRMXN,e,ye]RM

» Compute dL/dx. What is the dimension/size of dL/dx?
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Example: Chain Rule

» Consider the function
1,02 — 1,7
L(e) = 3lel*=ze'e
e=y— Ax, xeRN,AeIRMXN,e,ye]RM

» Compute dL/dx. What is the dimension/size of dL/dx?
» dL/dx e RN

dL _dLde
dx  dedx
di: ET c RlXM
de
%: —A e RM*N
dx
LAk e'(-A) = —(y— Ax)TA e RN
dx -V
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f:RN - RM

Mathematics for Machine Learning

Y1

YMm

f(x)e RM, xeRN
fi(x) fi(x1,. .., xN)

fu) ] | )
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f:RN - RM

y=f(x)eRM, xeRN
n fl(x) fl(xl,...,XN)

yM fM(x) fM(xl,:..,xN)

» Jacobian matrix (collection of all partial derivatives)

dy 9h ... Sh
E 6x1 ox N
: _ : c ]R,M XN
dym ofm ... Ofm
dx axl ox N
Marc Deisenroth @Deep Learning Indaba, September 10, 2017
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f(x)=Ax,  f(x)eRM, AeRMN, xeRN

» Compute the gradient d f/dx
» Dimension of df/dx:

Mathematics for Machine Learning Marc Deisenroth

@Deep Learning Indaba, September 10, 2017

21



f(x)=Ax,  f(x)eRM, AeRMN, xeRN

» Compute the gradient d f/dx
» Dimension of df/dx:

Since f : RN — RM, it follows that df/dx e RM*N
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f(x)=Ax,  f(x)eRM, AeRMN, xeRN

» Compute the gradient d f/dx
» Dimension of df/dx:
Since f : RN — RM, it follows that df/dx e RM*N
» Gradient:

N
(’) .
fi= 2 Ay = aﬁj = Ajj
j=1
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f(x)=Ax,  f(x)eRM, AeRMN, xeRN

» Compute the gradient d f/dx

» Dimension of df /dx:
Since f : RN — RM, it follows that df/dx e RM*N

» Gradient:
N
of:
fl‘:ZAijx]‘ @a—f:Ai]‘
j=1 !
0 0
TQ % Ay o Al
ﬂ: : : = : : =A
dx <9. a. . .
aLxAlA a% Avi - AmN
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Chain Rule

Mathematics for Machine Learning

Marc Deisenroth
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Example

» Consider f : R? — R,

x:R — R2

f(x) = f(x1,x2) = x} + 2x2,

x(t) — xa(t)| _
xz(t)

Mathematics for Machine Learning

Marc Deisenroth

cos(t)

sin(t)]
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Example

> Considerf:RZH]R, x:R — R2

f(x) = f(x1,%2) = x7 + 2x,
x(t) = [xl(t)] _ [sin(t)]
x2(t) cos(t)

» The dimensions df /dx and dx/dt are
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Example

> Considerf:RZH]R, x:R — R2

f(x) = f(x1,%2) = x7 + 2x,
x(t) = [xl(t)] _ [sin(t)]
x2(t) cos(t)

» The dimensions df /dx and dx/dt are 1 x 2 and 2 x 1, respectively
» Compute the gradient df/dt using the chain rule.
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Example

> Considerf:RZH]R, x:R — R2
f(x) = f(x1,%2) = x7 + 2x,
x(t) = [xl(t)] _ [sin(t)]
x2(t) cos(t)

» The dimensions df /dx and dx/dt are 1 x 2 and 2 x 1, respectively
» Compute the gradient df/dt using the chain rule.

6X]
ﬂ_[ﬂ o)
dt - 0x7 0x7 0xa
ot

. cost
= [ZSmt 2][ ) ]
—sint

= 2sinfcost —2sint = 2sint(cost —1)
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Derivatives with Matrices

» Re-cap: Gradient of a function f : RP — RE is an E x D-matrix:
# target dimensions x # parameters

with

dfeIREXD dfle,d] = 2}{;
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Derivatives with Matrices

» Re-cap: Gradient of a function f : RP — RE is an E x D-matrix:
# target dimensions x # parameters

with

dfeIREXD dfle,d] = 2}{;

» Generalization to cases, where the parameters (D) or targets (E)
are matrices, apply immediately

Mathematics for Machine Learning Marc Deisenroth @Deep Learning Indaba, September 10, 2017 25



Derivatives with Matrices

» Re-cap: Gradient of a function f : RP — RE is an E x D-matrix:
# target dimensions x # parameters

with

df c ]REXD df[e,d] _ ;Z:l

» Generalization to cases, where the parameters (D) or targets (E)
are matrices, apply immediately

» Assume f : RM*N — RP*Q then the gradient is a
(P x Q) x (M x N) object (tensor) where

o
dflp.q,m,n] = a)?”
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Derivatives with Matrices: Example (1)

f=Ax, feRM AeRMN xeRN
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Derivatives with Matrices: Example (1)

Mathematics for Machine Learning

f=Ax, feRM AeRMN xeRN

df Mx(MxN)
IA eR

ofr
af |4 ofi
dA @ 0A
0A

Marc Deisenroth

Rlx MXN)

@Deep Learning Indaba, September 10, 2017
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Derivatives with Matrices: Example (2)

N
ﬁzZAi]-xj, i=1,...,M
j=1

Mathematics for Machine Learning Marc Deisenroth @Deep Learning Indaba, September 10, 2017
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Derivatives with Matrices: Example (2)

N
ﬁzZAi]-xj, i=1,...,M
j=1

ofi _
oAy

Xy

Mathematics for Machine Learning Marc Deisenroth @Deep Learning Indaba, September 10, 2017
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Derivatives with Matrices: Example (2)

N
ﬁzZAi]-x]-, i=1,...,M
j=1

afl _ afl LT I1x1xN
aAiq = x5 = A, =x €R

Mathematics for Machine Learning Marc Deisenroth @Deep Learning Indaba, September 10, 2017
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Derivatives with Matrices: Example (2)

N
ﬁzZAi]-x]-, i=1,...,M
j=1

afl _ afl LT I1x1xN
aAiq _xq:>6Ai,; =x €R

afl _ OT c R1><1><N
OAgzi,

Mathematics for Machine Learning Marc Deisenroth @Deep Learning Indaba, September 10, 2017
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Derivatives with Matrices: Example (2)

N
ﬁzZAi]-x]-, i=1,...,M
j=1

afl _ afl LT I1x1xN
A —xq:>aAi’: =x eR
afl _ OT c R1><1><N
OAki,
0T
ofi _ x' 1x(MxN)
24" |oT eR
o7
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Example: Higher-Order Tensors

» Consider a matrix A € R**? whose entries depend on a vector
xeR?

» We can compute dA(x)/dx € R**2*3 in two equivalent ways:

Mmatp X \/ldo'l;
Ak e R
® 24,

" &S d YL
e
’ 2, H—é" /ﬂ
%—x'l @
7
2

i<t

>

2
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Example: Higher-Order Tensors

» Consider a matrix A € R**? whose entries depend on a vector
xeR3
» We can compute dA(x)/dx € R**2*3 in two equivalent ways:

matriX Vectol

Acr™ xe /ll3

@ :

d yedeh u

9“ @ RA—- e /ﬂ @ RSL\AP‘) mr‘ %f E '
E e m‘“z L[T @ /

@ ’ ’

&xl

> Ach af LIKM da /Kbm
2 i dx
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Gradients of a Single-Layer Neural Network (1)

o

Ab

f =tanh(Ax +b) e RM, xeRN,AeRM*N peRM
——

=:zeRM

Mathematics for Machine Learning Marc Deisenroth @Deep Learning Indaba, September 10, 2017
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Gradients of a Single-Layer Neural Network (1)

o

Ab

— tanh(Ax+ b M
f =tanh(Ax+b) e RY,

=:zeRM
of  of oz MxM
- oz b R
—
MxM MxM

Mathematics for Machine Learning

Marc Deisenroth
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Gradients of a Single-Layer Neural Network (1)

o

Ab

f =tanh(Ax +b) e RM, xeRN,AeRM*N peRM
——

=:zeRM

ﬂ_ of oz c RMxM

ob 0z b
—_———

MxM MxM
af_ (?f Mx(MxN)
0A " 0z ek

—

MxM

Mathematics for Machine Learnin, Marc Deisenroth
g
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Gradients of a Single-Layer Neural Network (2)

f =tanh(Ax +b) e RM, xeRN,Ae RM*N peRM
=:zeRM
of  of oz MxM
b~ oz b %
———
MxM MxM
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Gradients of a Single-Layer Neural Network (2)

f =tanh(Ax +b) e RM, xeRN,Ae RM*N peRM
=:zeRM
of  of oz MxM
b~ oz b %
———
MxM MxM

Z{;: diag(1 — tanh?(z)) € RM*M
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Gradients of a Single-Layer Neural Network (2)

f =tanh(Ax +b) e RM, xeRN,Ae RM*N peRM
——

=:zeRM
of of oz MxM
W oz b R
M~
MxM MxM

©)

Mathematics for Machine Learning
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@Deep Learning Indaba, September 10, 2017 30



Gradients of a Single-Layer Neural Network (2)

f =tanh(Ax +b) e RM, xeRN,Ae RM*N peRM
——

=:zeRM
8f_ of oz MxM
W 9z b %
———
MxM MxM
g: diag(1 — tanh?(z)) € RM*M
0z MxM
ob R
of . o LKof .. 0z .
P [i,j] = 1_21 5[1, l]%[l/]]

dfdb = np.einsum(’il, 1j’, dfdz, dzdb)
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Gradients of a Single-Layer Neural Network (3)

f =tanh(Ax +b) e RM, xeRN,Aec RM*N peRM
=:zeRM
of  of 0z Mx(MxN)
GA- oz oa °R
— ——
MxM Mx(MxN)

Mathematics for Machine Learning Marc Deisenroth @Deep Learning Indaba, September 10, 2017

31



Gradients of a Single-Layer Neural Network (3)

f =tanh(Ax +b) e RM, xeRN,Aec RM*N peRM
——

of  of 0z Mx(MxN)
A~ oz o4 °R
— —

=

= diag(1 — tanh?(z)) e RM*M (6)

D[ D

z

Marc Deisenroth @Deep Learning Indaba, September 10, 2017 31
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Gradients of a Single-Layer Neural Network (3)

f =tanh(Ax +b) e RM, xeRN,Aec RM*N peRM
——

of  of oz Mx(MxN)
A~ oz o4 °R
— —

Z,j':: diag(1 — tanh?(z)) € RM*M (6)
0z

» See (4)

o 4 of
gal Ml ;a aA[l’]’k]

_

Marc Deisenroth @Deep Learning Indaba, September 10, 2017 31
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Gradients of a Single-Layer Neural Network (3)

f =tanh(Ax +b) e RM, xeRN,Aec RM*N peRM
——
=:zeRM

of  of 0z Mx(MxN)
0A 0z 0A €R
— ;\/_/

MxM Mx(MxN)
o _ ia (1 — tanh? RM*M 6
5, diag anh”(z)) € (6)
- P See (4)
(
of | .- of
aa ikl ;5 aA[l’]’k]

dfdA = np.einsum(’il, 1jk’, dfdz, dzdA)
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Putting Things Together

» Inputs x, observed outputs y = f(z,0) + €,€ ~ N(O, Z)

Mathematics for Machine Learning Marc Deisenroth @Deep Learning Indaba, September 10, 2017
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Putting Things Together

» Inputs x, observed outputs y = f(z,0) + €,€ ~ N(O, Z)

» Train single-layer neural network with

f(z,0) =tanh(z), z=Ax+b, 60={ADb}

Mathematics for Machine Learnin, Marc Deisenroth @Deep Learning Indaba, September 10, 2017
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Putting Things Together

» Inputs x, observed outputs y = f(z,0) + €,€ ~ N(O, Z)
» Train single-layer neural network with
f(z,0) =tanh(z), z=Ax+b, 60={ADb}
» Find A, b, such that the squared loss
L(6) = 3lel*, e=y—f(z0)

is minimized
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g P g P



Putting Things Together

v

Inputs x, observed outputs y = f(z,0) + €,€ ~ N (O, Z)
» Train single-layer neural network with

f(z,0) =tanh(z), z=Ax+b, 60={ADb}

v

Find A, b, such that the squared loss

L(8) = 3le|*, e=y—f(z0)

is minimized

v

Partial derivatives:

oL L de of oL oe of

57A - Oe afaz ﬁ» (1) @f» (2)1(3) g» (6)
oL _cLdedfoz ozl

ob (e of 0z b " ©

Mathematics for Machine Learnin, Marc Deisenroth @Deep Learning Indaba, September 10, 2017
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Gradients of a Multi-Layer Neural Network

Ay, by Ag by Ap 9,bpo Ap-1,bp1

» Inputs x, observed outputs y
» Train multi-layer neural network with

fo=x
fl m(Al—lfz—l + bl—l)l l = 1,. . .,L

Mathematics for Machine Learning Marc Deisenroth @Deep Learning Indaba, September 10, 2017
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Gradients of a Multi-Layer Neural Network

Ay, by Ag by Ap 9,bpo Ap-1,bp1

» Inputs x, observed outputs y
» Train multi-layer neural network with

fo=x
fl :0'1(A1_1f1_1+b1_1), l: 1,...,L
» Find A}, b; forj=0,...,L—1, such that the squared loss
L(6) = |y — f.(6,%)]?

is minimized, where 6 = {A]-, b}, j=0,...,L-1

Mathematics for Machine Learning Marc Deisenroth @Deep Learning Indaba, September 10, 2017
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Gradients of a Multi-Layer Neural Network
OO,
Ap-1,bp

oL 0L of,
69L_1 (ﬂf, 59L_1
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Gradients of a Multi-Layer Neural Network

E#:E#@:@

Ap-2,bp-2 Ap-1,br1

oL oL ofy
0, 1  f, 0011

oL oL of, of.,
00— ﬁ afL—] TH
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Gradients of a Multi-Layer Neural Network

@Eﬁ@ﬂ.—.—.&:&@:@

A by Az, by Ap2,bps Ap-1,br1

oL oL ofy
0 1 Of, 001 4

oL AL Of, Of14
0 5  Of |0f,_, 00 2

oL 0L Of, |0fra9fL
003 B W afol afoz 0013
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Gradients of a Multi-Layer Neural Network

@Eﬁ@ﬂ.—.—.&:&@:@

Az, by Ap2,bps Ap-1,br1

Mathematics for Machine Learning

Ai, by

oL
0011

oL
00,2

oL
003

oL

0, =

oL _of,
0f, 38,4

oL | of;
Ff[ afL—1

f 14
001>

oL of;

Of L1 0fr

of L 0f1

0f 120013

oL of;

("}fi+2 afi-&-l

aflafoll“

8fi+1 20;
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Gradients of a Multi-Layer Neural Network

@Eﬁ@ﬂ.—.—.&:&@:@

Ay by Ag, by Apo,brs Ap-1,br1
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» More details (including efficient implementation) later this week
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Training Neural Networks as Maximum Likelihood

Estimation

» Training a neural network in the above way corresponds to
maximum likelihood estimation:
» Ify = NN(x,0) + €, €~ N(0, I) then the log-likelihood is

log p(y|X,0) = —3ly — NN(x,0)|?
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Training Neural Networks as Maximum Likelihood

Estimation

» Training a neural network in the above way corresponds to
maximum likelihood estimation:
» Ify = NN(x,0) + €, €~ N(0, I) then the log-likelihood is

log p(y|X,0) = —3ly — NN(x,0)|?

» Find 6* by minimizing the negative log-likelihood:

0" = arg mein —log p(y|x, 0)

= argmein % ly — NN(x, 0)|

argmein L(6)
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Training Neural Networks as Maximum Likelihood

Estimation

» Training a neural network in the above way corresponds to
maximum likelihood estimation:
» Ify = NN(x,0) + €, €~ N(0, I) then the log-likelihood is

log p(y|X,0) = —3ly — NN(x,0)|?

» Find 6* by minimizing the negative log-likelihood:

0" = arg mein —log p(y|x, 0)

= argmein%Hy — NN(x,0)|?
= argmein L(6)

» Maximum likelihood estimation can lead to overfitting (interpret

noise as signal)
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Example: Linear Regression (1)

» Linear regression with a polynomial of order M:
y=f(x,0)+e, e~N(0 0?)

M
F(x,0) = 6g + 612 + 022 + -+ + O™ = " O’
i=0

Mathematics for Machine Learnin, Marc Deisenroth @Deep Learning Indaba, September 10, 2017
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Example: Linear Regression (1)

» Linear regression with a polynomial of order M:
y=f(x,0)+e, e~N(0 0?)

M
F(x,0) = 6g + 612 + 022 + -+ + O™ = " O’
i=0

» Given inputs x; and corresponding (noisy) observations v;,

i=1,...,N, find parameters 6 = [0y, ..., 0m]", that minimize the
squared loss (equivalently: maximize the likelihood)

L(8) = D (v — f(x;,0))
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Example: Linear Regression (2)

Polynomial of degree 16

O Data

Maximum likelihood estimate

3 L '
-5 0 5

X
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Example: Linear Regression (2)

Polynomial of degree 16

f(x)

O Data
Maximum likelihood estimate
s

3 L
-5 0 5
X

» Regularization, model selection etc. can address overfitting

» Tutorials later this week
» Alternative approach based on integration
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Overview

Integration

Mathematics for Machine Learning

Marc Deisenroth

@Deep Learning Indaba, September 10, 2017
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Integration: Outline

1. Motivation
2. Monte-Carlo estimation

3. Basic sampling algorithms

Mathematics for Machine Learning Marc Deisenroth
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Bayesian Integration to Avoid Overfitting

Polynomial of degree 16

3
» Instead of fitting a single set
2
of parameters 0%, we can
average over all plausible !
parameters go
» Bayesian integration: 1
95% predictive confidence bound
2feDem
p(y|x) — f p(y|x, 9)p(9)d9 :m%rggmﬁzhhood estimate
-3 L
-5 0 5

X
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Bayesian Integration to Avoid Overfitting

Polynomial of degree 16

» Instead of fitting a single set
of parameters 6%, we can
average over all plausible

parameters Eo
» Bayesian integration: 1
95% predictive confidence bound
-2 || o Data
= — Maxi likelihood estimats
plyl) = [ plylx Op()as e ——
-3 T
-5 0 5

X

» More details on what p(60) is P> Tutorials later this week
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Bayesian Integration to Avoid Overfitting

Polynomial of degree 16

» Instead of fitting a single set
of parameters 6%, we can
average over all plausible

parameters Eo
» Bayesian integration: 1
95% predictive confidence bound
-2 || o Data
= — Maxi likelihood estimats
plyl) = [ plylx Op()as e ——
-3 T
-5 0 5

X

» More details on what p(60) is P> Tutorials later this week

» For neural networks this integration is intractable
» Approximations
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Computing Statistics of Random Variables

» Computing means/(co)variances also requires solving integrals:
Exfx] = | xp(x)dx = p,
Valxl =[x )= ) T

Cov|x,y JJ x—pu)(y— yy)dedy
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Computing Statistics of Random Variables

» Computing means/(co)variances also requires solving integrals:
Exfx] = | xp(x)dx = p,
Valxl =[x )= ) T
Cov|x,y JJ x—pu)(y— yy)dedy

» These integrals can often not be computed in closed form
» Approximations

Mathematics for Machine Learning Marc Deisenroth @Deep Learning Indaba, September 10, 2017 41



Approximate Integration

» Numerical integration (low-dimensional problems)

» Bayesian quadrature, e.g., O'Hagan (1987, 1991); Rasmussen &
Ghahramani (2003)

» Variational Bayes, e.g., Jordan et al. (1999)

v

Expectation Propagation, Opper & Winther (2001); Minka (2001)

Monte-Carlo Methods, e.g., Gilks et al. (1996), Robert & Casella
(2004), Bishop (2006)

v
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Monte Carlo Methods—Motivation

» Monte Carlo methods are computational techniques that make
use of random numbers
» Two typical problems:

1. Problem 1: Generate samples {x(*)} from a given probability
distribution p(x), e.g., for simulation or representations of data
distributions
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Monte Carlo Methods—Motivation

» Monte Carlo methods are computational techniques that make
use of random numbers
» Two typical problems:

1. Problem 1: Generate samples {x(*)} from a given probability
distribution p(x), e.g., for simulation or representations of data
distributions

2. Problem 2: Compute expectations of functions under that
distribution:

E[f(x)] = f F@)p(x)dx
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Monte Carlo Methods—Motivation

» Monte Carlo methods are computational techniques that make
use of random numbers
» Two typical problems:

1. Problem 1: Generate samples {x(*)} from a given probability
distribution p(x), e.g., for simulation or representations of data

distributions
2. Problem 2: Compute expectations of functions under that
distribution:

E[f(x)] = [ fx)p(ix

P> Example: Means/variances of distributions, predictions
Complication: Integral cannot be evaluated analytically

Mathematics for Machine Learning Marc Deisenroth @Deep Learning Indaba, September 10, 2017 43



Problem 2: Monte Carlo Estimation

» Computing expectations via statistical sampling:
E[f()] = [ fx)p(aidx

1 S s s
> s fED) 2~ p)
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Problem 2: Monte Carlo Estimation

» Computing expectations via statistical sampling:
E[f()] = [ fx)p(aidx

1 S s s
> s fED) 2~ p)

» Making predictions (e.g., Bayesian regression with inputs x and
targets y)

plyl) = [ plyle,x) p(e) do
—
Parameter distribution

1 S
~ 5 D P16, x), 89~ p(6)
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Problem 2: Monte Carlo Estimation

» Computing expectations via statistical sampling:
E[f()] = [ fx)p(aidx

1 S s s
> s fED) 2~ p)

» Making predictions (e.g., Bayesian regression with inputs x and
targets y)

plyl) = [ plyle,x) p(e) do
—
Parameter distribution

1 S
~ 5 D P16, x), 89~ p(6)

» Key problem: Generating samples from p(x) or p(0)
» Need to solve Problem 1
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Sampling Discrete Values

» u ~ U[0,1], where U is the uniform distribution

»u=055=x=c¢
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Continuous Variables

p(2)

» More complicated
» Geometrically, we wish to sample uniformly from the area under

the curve
» Two algorithms here:
» Rejection sampling
» Importance sampling
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Rejection Sampling: Setting

p(z)

» Assume:
» Sampling from p(z) is difficult
» Evaluating fi(z) = Zp(z) is easy (and Z may be unknown)
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Rejection Sampling: Setting

» Assume:
» Sampling from p(z) is difficult
» Evaluating fi(z) = Zp(z) is easy (and Z may be unknown)

» Find a simpler distribution (proposal distribution) q(z) from
which we can easily draw samples (e.g., Gaussian, Laplace)

» Find an upper bound kq(z) > §(z)
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Rejection Sampling: Algorithm

kq(z0) kq(z)

acceptance area

rejection area

20 z
Adapted from PRML (Bishop, 2006)

1. Generate zp ~ 4(z)
2. Generate ug ~ U[0,kq(zo)]

3. If ugp > p(zp), reject the sample. Otherwise, retain z
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Properties

kq(z0) kq(z)

rejection area

acceptance area

Adapted from PRML (Bishop, 2006)

» Accepted pairs (z, u) are uniformly distributed under f(z)

Mathematics for Machine Learning
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Properties

kq(z0) kq(z)

acceptance area

rejection area

20 z
Adapted from PRML (Bishop, 2006)

» Accepted pairs (z, u) are uniformly distributed under f(z)

» Probability density of the z-coordiantes of accepted points must
be proportional to p(z)
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Properties

kq(z0) kq(z)

acceptance area

rejection area

20 z
Adapted from PRML (Bishop, 2006)

» Accepted pairs (z, u) are uniformly distributed under f(z)

» Probability density of the z-coordiantes of accepted points must
be proportional to p(z)

» Samples are independent samples from p(z)
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Shortcomings

kq(z0) kq(z)

rejection area

acceptance area

Adapted from PRML (Bishop, 2006)

» Finding the upper bound k is tricky

Mathematics for Machine Learning
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Shortcomings

kq(z0) kq(z)

rejection area

acceptance area

Adapted from PRML (Bishop, 2006)

» Finding the upper bound k is tricky

» In high dimensions the factor k is probably huge
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Shortcomings

kq(z0) kq(z)

acceptance area

rejection area

20 z
Adapted from PRML (Bishop, 2006)

» Finding the upper bound k is tricky
» In high dimensions the factor k is probably huge

» Low acceptance rate/high rejection rate of samples

Mathematics for Machine Learning Marc Deisenroth @Deep Learning Indaba, September 10, 2017

50



Importance Sampling
Key idea: Do not throw away all rejected samples, but give them

lower weight by rewriting the integral as an expectation under a
simpler distribution g (proposal distribution):

By [f(x)] = j F@)p(x)dx
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Importance Sampling

Key idea: Do not throw away all rejected samples, but give them
lower weight by rewriting the integral as an expectation under a
simpler distribution g (proposal distribution):

By [f(x)] = j F@)p(x)dx

_ q(x)
- | fpe
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Importance Sampling

Key idea: Do not throw away all rejected samples, but give them
lower weight by rewriting the integral as an expectation under a
simpler distribution g (proposal distribution):
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Importance Sampling

Key idea: Do not throw away all rejected samples, but give them
lower weight by rewriting the integral as an expectation under a
simpler distribution g (proposal distribution):

- [ et Ztax = [ B qeos
r)
- [f(x)q(x }
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Importance Sampling

Key idea: Do not throw away all rejected samples, but give them
lower weight by rewriting the integral as an expectation under a
simpler distribution g (proposal distribution):

f £

If we choose g in a way that we can easily sample from it, we can
approximate this last expectation by Monte Carlo:

S
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Importance Sampling

Key idea: Do not throw away all rejected samples, but give them
lower weight by rewriting the integral as an expectation under a
simpler distribution g (proposal distribution):

- [ Fpax

- [ Fwpe LB ax = [ f0 2 g

q(x
-E, [f(x)’;((m

If we choose g in a way that we can easily sample from it, we can
approximate this last expectation by Monte Carlo:

YACIN P (s) x() ©)), %6 ~
Eq[ (x] S; x ) wax X gq(x)
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Properties

» Unbiased if 4 > 0 where p > 0 and if we can evaluate p
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Properties

» Unbiased if 4 > 0 where p > 0 and if we can evaluate p

» Breaks down if we do not have enough samples (puts nearly all
weight on a single sample)
» Degeneracy, see also Particle Filtering and SMC
(Thrun et al., 2005; Doucet et al., 2000)
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Properties

» Unbiased if 4 > 0 where p > 0 and if we can evaluate p

» Breaks down if we do not have enough samples (puts nearly all
weight on a single sample)
» Degeneracy, see also Particle Filtering and SMC
(Thrun et al., 2005; Doucet et al., 2000)

» Many draws from proposal density q required, especially in high

dimensions
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Properties

» Unbiased if 4 > 0 where p > 0 and if we can evaluate p
» Breaks down if we do not have enough samples (puts nearly all
weight on a single sample)
» Degeneracy, see also Particle Filtering and SMC
(Thrun et al., 2005; Doucet et al., 2000)

» Many draws from proposal density q required, especially in high

dimensions

» Requires to be able to evaluate true p. Generalization exists for f.
This generalization is biased (but consistent).
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» Breaks down if we do not have enough samples (puts nearly all
weight on a single sample)
» Degeneracy, see also Particle Filtering and SMC
(Thrun et al., 2005; Doucet et al., 2000)

» Many draws from proposal density q required, especially in high

dimensions

» Requires to be able to evaluate true p. Generalization exists for f.
This generalization is biased (but consistent).

» Does not scale to interesting (high-dimensional) problems
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Properties

» Unbiased if 4 > 0 where p > 0 and if we can evaluate p
» Breaks down if we do not have enough samples (puts nearly all
weight on a single sample)
» Degeneracy, see also Particle Filtering and SMC
(Thrun et al., 2005; Doucet et al., 2000)

» Many draws from proposal density q required, especially in high

dimensions

» Requires to be able to evaluate true p. Generalization exists for f.
This generalization is biased (but consistent).

» Does not scale to interesting (high-dimensional) problems

» Different approach to sample from complicated (high-dimensional)
distributions: Markov Chain Monte Carlo (e.g., Gilks et al., 1996)
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Summary

matrix vedor
()
Aclk xelR

@ E kq(zo0) kq()

rejection area

acceptance area

» Two mathematical challenges in machine learning
» Differentiation for optimizing parameters of machine learning

models
» Vector calculus and chain rule

» Integration for computing statistics (e.g., means, variances) and as
a principled way to address overfitting issue
P> Monte-Carlo integration to solve intractable integrals
@Deep Learning Indaba, September 10, 2017 53
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Some Application Areas

ieopard

jaguar
cheetah
snow leopard
Egyptian cat

» Image/speech/text/language processing using deep neural
networks (e.g., Krizhevsky et al., 2012 or overview in Goodfellow
etal., 2016)

» Data-efficient reinforcement learning and robot learning using
Gaussian processes (e.g., Deisenroth & Rasmussen, 2011)

» High-energy physics using deep neural networks or Gaussian
processes (e.g., Sadowski et al. 2014; Bertone et al., 2016)

ey
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