
Lecture 15: Linear Discriminant Analysis

In the last lecture we viewed PCA as the process of finding a projection of the covariance matrix. This pro-
jection is a transformation of data points from one axis system to another, and is an identical process to axis
transformations in graphics. The vector xi in the original space becomes the vector xi −µ in the transformed
space. The individual ordinates are the projected lengths of the vector on each of the axes of the transformed
space, and this is readily computed using the dot product.

The mean centred data matrix, where each column is one variable, is denoted U and the covariance matrix can
be formed from the product:

Σ = (1/(N − 1))UTU

A full projection is defined by a matrix in which each column is a vector defining the direction of one of the
new axes:

Φ = [φ1, φ2, φ3 · · ·φm]

The projection basis vectors φi are orthonormal which means that

ΦTΦ = I

The projection of the data in mean adjusted form can be written:

Y = UΦ

Projection of the covariance matrix is

ΦTΣΦ = ΦT (1/(N − 1))UTUΦ
= (1/(N − 1))ΦTUTUΦ
= (1/(N − 1))(UΦ)T (UΦ)

which can be seen to be the covariance matrix of the projected points.
The projections can equally well be found using scatter matrices rather than co-varainace matrices. A

scatter matrix is un-normalised, and defined using the mean centered data matrix as before:

S = UTU

It is sometimes convenient to write expressions for covariance (or scatter) matrices in a different form, thus:

Σ =
1

N − 1

N∑
j=1

(xj − x)(xj − x)T

Here, the sum is taken over the number N of data points, which are expressed as a vector xj of dimension n. µ
is the mean vector also of dimension n. The implied product is the outer product, not the dot product.

The PCA projection is just one possible projection and it has the property that it diagonalises the covariance
matrix. That is it transforms the points such that they are independent of each other. It is found by determining
the eigenvectors of Σ:
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ΦTΣΦ = Λ

We will now look at a different projection which is the basis of a classification process called linear discriminant
analysis LDA.

Linear Discriminant Analysis, or simply LDA, is a well-known classification technique that has been used
successfully in many statistical pattern recognition problems. It was developed by Ronald Fisher, who was
a professor of statistics at University College London, and is sometimes called Fisher Discriminant Analysis
(FDA). The primary purpose of LDA is to separate samples of distinct groups. We do this by transforming the
data to a different space that is optimal for distinguishing between the classes.

For example, let us suppose we have a simple two variable problem in which there are two classes of
objects.

Having made many measurements from examples of the two classes we can find the best Gaussian model for
each class. The nominal class boundaries (where the probability of a point belonging to the class falls below
a certain limit) are shown by the ellipses. Now, given a new measurement, we want to determine which class
it belongs to. One approach might be to compute the Mahalanobis distance between the unknown point and
each class mean, and then pick the nearest class. This approach however is computationally very expensive for
high dimensional problems since we need to invert the co-variance matrix for each class. For small sample size
problems this may not be possible at all since we may not have enough data to make a full rank estimate of the
co-variance matrix.

Instead, the approach of the LDA is to project all the data points into new space, normally of lower di-
mension, which maximises the between-class separability while minimising their within-class variability. In
the example above we do this by projecting the points onto the solid axis. Each class will form a single di-
mensional Gaussian on that axis and the means will be well separated. The variance is also low on that axis,
meaning that overall we can classify a new point quickly and easily. In contrast if we were to project the two
classes onto the dashed axis, then the resulting distributions would overlap considerably and each class would
have high variability, meaning that classification would be very difficult. LDA generalises this process for mul-
tiple classes and arbitrarily large numbers of variables. Its main limitation is the implicit assumption that the
true covariance matrices of each class are the same.

The above figure illustrates the difference between PCA and LDA. In PCA we take the data as a whole and do
not consider any division into classes. The axes are optimal for representing the data as they indicate where the
maximum variation actually lies. The LDA axis is optimal for distinguishing between the different classes. In
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general the number of axes that can be computed by the LDA method is one less than the number of classes in
the problem. In the figure the φ1 axis is less effective for separating the classes than the ν (LDA) axis. The φ2

axis is clearly completely useless for classification.
The first step in the LDA is finding two scatter matrices referred to as the “between class“ and “within

class“ scatter matrices. Suppose in a given problem we have g different classes or (sample groups). Each
sample group πi has a class mean, which we denote xi

xi =
1

Ni

Ni∑
j=1

xi,j

where there are Ni data points in class πi. We can also define a sample group covariance matrix:

Σi =
1

Ni − 1

Ni∑
j=1

(xi,j − xi)(xi,j − xi)T

and we can define a grand mean for the whole data set:

x =
1

N

g∑
i=1

Nixi =
1

N

g∑
i=1

Ni∑
j=1

xi,j

The between class scatter matrix is defined as:

Sb =

g∑
i=1

Ni(xi − x)(xi − x)T

We could normalise this into a between class covariance matrix by dividing by N − 1, but it is not necessary to
do so. If all classes were the same size then the N − i could be removed from the equation. The within class
matrix is defined as follows:

Sw =

g∑
i=1

(Ni − 1)Σi =

g∑
i=1

Ni∑
j=1

(xi,j − xi)(xi,j − xi)T

The Sw matrix is computed by pooling the estimates of the covariance matrices of each class. Since each Σi

has rank Ni − 1 its rank can be at most N − g.
The main objective of LDA is to find a projection matrix Φlda that maximises the ratio of the determinant

of Sb to the determinant of Sw. This can be written:

Φlda = arg max
Φ

|ΦTSbΦ|
|ΦTSwΦ|

This ratio is known as Fishers criterion. To get an intuition of what is means, note that the determinant of
the co-variance matrix tells us how much variance a class has. For example, for the co-variance matrix in the
PCA (diagonal) projection, the value of the determinant is just the product of the diagonal elements which are
the individual variable variances. The determinant has the same value under any ortho-normal projection. So
Fishers criterion tries to find the projection that maximises the variance of the class means and minimises the
variance of the individual classes.

It has been shown that Φlda is the solution of the following equation:

SbΦ− SwΦΛ = 0

Multiplying by the inverse of Sw we get:

S−1
w SbΦ− S−1

w SwΦΛ = 0
S−1
w SbΦ− ΦΛ = 0
S−1
w SbΦ = ΦΛ
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Thus, if Sw is a non-singular matrix, and can be inverted, then the Fisher’s criterion is maximised when the
projection matrix Φlda is composed of the eigenvectors of:

S−1
w Sb

Notice that there will be at most g − 1 eigenvectors with non-zero real corresponding eigenvalues. This is
because there are only g points to estimate Sb. This again can represent a massive reduction in the dimension-
ality of the problem. In face recognition for example there may be several thousand variables, but only a few
hundred classes.

Once the projection is found all the data points can be transformed to the new axis system along with the
class means and co-variances. Allocation of a new point to a class can be done using a distance measure such
as the Mahalanobis distance. We will look at methods of classifying in the next lecture. LDA is essentially just
a projection method.

The most Discriminant Feature method

The performance of the standard LDA can be seriously degraded if there are only a limited number of total
training observations N compared to the dimension of the feature space n.

Since Sw is a function of N − g or fewer linearly independent vectors, its rank is N − g or less. Therefore,
Sw is a singular matrix if N is less than n + g, or, analogously might be unstable if N << n. This is an
important problem since, as we saw in the analysis above, it is necessary to invert the Sw matrix to find the
LDA basis vectors. To overcome this problem, a two-stage feature extraction technique can be adopted. First
the n-dimensional training samples from the original vector space are projected to a lower dimensional space
using PCA. Then LDA is applied next to find the best linear discriminant features on that PCA subspace. Thus,
the Fishers criterion can be written as:

Φlda = arg max
Φ

|ΦTΦT
pcaSbΦpcaΦ|

|ΦTΦT
pcaSwΦpcaΦ|

And as before the solution is given by the eigenvectors of:

(ΦT
pcaSwΦpca)−1(ΦT

pcaSbΦpca)

This has at most g − 1 eigenvectors with non-zero, real corresponding eigenvalues. Let us suppose that there
are p principal components. This will be the case if there are at least p+ 1 independent data points, regardless
of how large the number of variables n is. Thus, if we have that ΦT

pcaSwΦpca has dimension p × p, and is
estimated from N − g independent observations. Hence providing:

g ≤ p ≤ N − g

we can always invert ΦT
pcaSwΦpca and therefore obtain an LDA estimate. The method can always be made to

work because, in cases where p > N − g we can just use a smaller number of the eigenvectors.
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