
Intelligent Data Analysis and Probabilistic Inference Lecture 11 Slide No 1

Lecture 11:

Introduction to Probabilistic Graphical Models
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Graphical Models

 So far we have seen examples of two different types of 
graphical model representing the same inference 
problem:

 Bayesian Networks:

 These have the advantage of displaying causal relationships but 
may not converge correctly when multiply connected.

 Join Trees:

 These can always solve the problem (given sufficient time), but 
don't contain causal information.
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The Tanner graph

 The Tanner graph is a graphical model that was introduced 
as a model for error recovery in parity checking.

 It is a bi-partite graph - ie it has two node types and each 
node connects only to its opposite type.

The circles represent bits and 
the squares represent parity checks.
The squares evaluate to 1 if the 
sum of the bits  is even.
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Parity checking as an inference problem

 Suppose the bits are transmitted down a noisy channel 
and let Pf be the probability that a bit is flipped during 
transmission.

 Let Yi be the measured (received) bit values.

 Let Xi be the true (transmitted) bit values which we 
want to estimate, then:

                P(Xi|Yi) = 1- Pf   if Xi = Yi

                             =  Pf   otherwise.
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Parity checking as an inference problem

 So given a possible bit string (X1, X2, X3, ... Xn) we can 
calculate a probability of it being correct using:

               

 If we did not have any parity constraints then the most 
probable bit string is the one for which Xi = Yi for all the 
bits - ie the string we received.
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Parity checking as an inference problem

 Now suppose that bits 1,2 and 3 are 

 data bits and 4, 5 and 6 are parity bits.

 The parity bits are set so that sum of

 the three bits in each group is even. 

 We check this by evaluating a constraint function for each 
square eg:

             (X1, X3, X5) = 1 - (X1+ X3+ X5 ) mod 2



Intelligent Data Analysis and Probabilistic Inference Lecture 11 Slide No 7

Parity checking as an inference problem

 We can re-write our joint probability distribution as:

 The parity constraints ensure that any bit                      
 string failing a check receives a zero
 probability. 

 In the event that the received bit string fails a parity check 
the next most probable bit string is selected.



Intelligent Data Analysis and Probabilistic Inference Lecture 11 Slide No 8

Factor Graphs

 The factor graph is the most general graphical model to 
express probabilistic inference problems. It is a bi-
partite graph representing a factorisation:

 The nodes are either variables (X1, X2,  X3, . . .  Xn)

                                  or factors (f1, f2,  f3, . . .  fn)

 In probabilistic inference the function is usually a joint 
probability distribution.
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The Tanner graph as a factor graph

 The Tanner graph represents a factorisation of a joint 
probability distribution. 

 The factor graph is almost identical but includes factors 
of the form P(Xi|Yi).
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Bayesian Nets as factorisation

 Bayesian nets can be looked on as 
the factorisation of a joint 
probability distribution.

 For example, for the metastatic 
cancer net:

 or in general
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Bayesian Net factor graphs

 Every Bayesian net can be represented as a factor graph. 
The factors are simply the conditional probability 
matrices. For the metastatic cancer we have:
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Arguments in favour of the factor graph model

 The factor graph model gives a uniform treatment to 
message passing. 

 The message that a node sends to a neighbour is made 
up of the messages that it receives from all other 
neighbours.

 The factors (conditional probability matrices) transform 
the messages into evidence for the receiving node.
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Join (or Junction) Trees and factorisation

 The join tree represents a different factorisation of the 
joint probability distribution of a Bayesian network. It is 
the product of potential functions.

 For the metastatic cancer example we have:
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Join Trees and factorisation

 The potential functions in a join tree are of the form 
P(R|S). The factor graph representation is:
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Markov Random Fields 

 Join trees are an example of a graphical structure called 
Markov Random Fields. They are so-called since each 
node depends only on its immediate neighbours.

 They are expressed as a factorisation into subsets Vj 
each with a potential function:

Where Z is a normalisation constant
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Normalisation in Markov Random Fields

 The normalisation constant Z gives us flexibility in the 
definition the factorisation in a Markov Random Field. 

 However this comes at a computational cost, as for 
large inference problems Z is difficult to compute.

 In the Join tree algorithm we carefully ensured that Z=1 
 whenever we updated the potential tables.
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Pairwise Markov Random Fields

 A pairwise Markov random field has all its variables 
joined in cliques of size 2, thus the corresponding factor 
graph has factors that join at most two variables. 

 Join trees are an example of pairwise Markov Random 
fields, but a more useful example is the grid structured 
network used in image processing. 
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Example - medical image segmentation/restoration

 Pairwise Markov Random Fields 
have been used successfully in 
image processing for medical 
diagnosis:

 Segmentation - determine which class 
pixels belong to: Grey Matter (cortical 
neurones) White Matter (connective 
tissue) or Cerebral Spinal Fluid. 

 Restoration - correct pixels that are 
wrong due to imaging errors and 
artefacts.
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Image Segmentation/Restoration using MRF
 Each pixel in the image is a 
variable in the inference problem. 
The filled circles represent actual 
pixel values and are labelled Yi.

 The model (segments or restored 
image values) is represented by the 
empty circles Xi.

 The Xi values are calculated using 
the pixel measurements and the 
neighbour's messages.
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Image Segmentation as Probabilistic Inference

 We need to define two compatibility functions:

 (Xi,Yi) - relates the observed and hidden values and is rather 
like a conditional probability P(Xi|Yi). It expresses the 
probability of the pixel belonging to a particular class (WM, 
GM, CSF) give the measured pixel value Yi.

 (Xi,Xj) - expresses the compatibility between adjacent pixels. 
Any pixels not connected will have a Y(Xi,Xj) value of 1 
expressing no information. For connected pixels this 
compatibility function is like a joint probability of the adjacent 
states being neighbours.



Intelligent Data Analysis and Probabilistic Inference Lecture 11 Slide No 21

Image segmentation as Probabilistic Inference

 Given an image Y=(Y1, Y2, . . Yn)

 And a segmentation X = (X1, X2, . . Xn)

 We can define a joint probability distribution:

 and find the values of Xi that give the maximum 
probability (ie the most likely segmentation)

 Note that the high cost of computing Z makes this direct 
approach computationally infeasible.
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Factor graph of the Pairwise MRF

 The pairwise Markov random field, being just a 
factorisation of a probability distribution can be 
represented as a factor graph.
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Belief Propagation

 Belief propagation overcomes the computational 
difficulties of using a global joint probability 
distribution by making local computations.

 We have already discussed belief propagation in 
Bayesian networks which is done using  and  
messages.

 The belief in a variable is just its posterior probability 
distribution.
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Belief propagation in MRFs

 Belief propagation in Markov Random fields is simpler 
than in Bayesian Networks, because there is no notion 
of causality, and so all messages are of the same form 
(similar to the  message). We write the belief in a 
variable as:

 Where Xi(s) means state s of node Xi and mk means a 
message (or evidence) from a neighbour.
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 We write the un-normalised belief in a variable 
excluding the evidence from its neighbour j as:

 Where \j means “excluding node j”. Notice the 
similarity of this equation to the definition of the  
message. 

Belief propagation in MRFs
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 Finally we can define the messages (equivalent to the  
evidence) as:

 Where 
 mi(Xj) is a vector message for the states of Xj, 

 b\j(Xi) is a vector of the beliefs in the states of Xi excluding the 
evidence from Xj and 

 (Xi,Xj) is the compatibility matrix.

Belief propagation in MRFs
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Loopy Propagation

 In the case of Bayesian Networks we noted that loops in 
the network mean that the propagation would never 
terminate. 

 However, we could always find a correct probability 
distribution for any inference problem using the join tree 
method.

 In fact Loopy propagation is an optimisation problem, 
and will normally converge though not necessarily to the 
optimum.
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Loopy Propagation in Markov random fields

 The pairwise MRFs used in computer vision 
usually work well because the optimisation is 
strongly constrained by the evidence variables 
(ie the pixel values from the image). 

 Hence belief propagation occurs as a series of 
epochs in which each pixel of the image is 
updated once. After a few epochs the 
segmentation will converge.
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Summary on Graphical Models

 In probabilistic inference graphical models express 
local relationships that allow us to carry out belief 
propagation in a reasonable time frame.

 Without using a graphical model an inference may be 
expressed as a sum over the joint distribution:

 but this is computationally infeasible for even moderate 
size problems.
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Summary on Graphical Models

 Bayesian Networks express conditional independence 
relationships and causality, and for the singly connected 
case (or specific instantiations in multiply connected 
networks) offer fast computation.

 Join trees are always singly connected, but have larger 
factors and so become computationally infeasible if the 
number of cliques is small.

 Pairwise MRFs, with multiple loops, can be solved 
effectively by using an iterative approach.
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Summary on Graphical Models

 Belief propagation in graphical models with loops is an 
optimisation problem.

 Curiously the same equations are found to govern other 
physical properties (magnetism) where their solution is 
done by techniques of free energy minimisation.
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Summary on Graphical Models

 Graphical models occur in other fields as well, where 
they perform a similar role in expressing local 
properties. Examples are:

 Genetic regulatory metworks

 Neural Circuitry (spiking neurones)

 Sensor Networks

 There is currently much active research in trying to 
relate the capabilities of theses different graphical 
models for making inferences.
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