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Lecture 12

 Sampling and re-sampling
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Why Sampling?

 Analytical solution 
     - too difficult for mortals!

 Enumerate all possibilities by computer 

     - the world won't last long enough!

 Play 100 games and see how many you win 
     - a practical possibility

 Problem: What is the chance of 
winning at patience?
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Monte Carlo Methods

 Sampling solutions to problems like estimating the 
probability of winning at cards are called Monte Carlo 
methods:

 Every year punters lose large sums of money by 
sampling in the casinos at Monte Carlo. 

 (and they don't even bother to calculate the 
probability of winning)
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Monte Carlo in general

 Given a set of discrete variables, and the ability to 
make random samples from them can we infer the 
probability distribution over the data.

 We could:
 fit a distribution to the data

 train a classifier (neural net, Bayesian net etc) with the data

 retain the samples as the data model

 etc.
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Example: Sampling from a Bayesian Network

 Given a Bayesian Network with variables 

 X={X1, X2 .. XN}, we can draw a sample from the 
joint probability distribution as follows:

 Instantiate randomly all but one of the variables, say Xi

 Compute the posterior probability over the states of Xi  

 Select a state of Xi at random, based on the distribution

 We can always do this even if the network is multiply 
connected.
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Markov Blanket - an implementation detail

 If all nodes in a network except Xi are instantiated 
then only a small set of nodes are needed to compute 
the posterior distribution over Xi.

 The Children of Xi

 The Parents of Xi

 The parents of the children of Xi

 These variables are termed the Markov Blanket of Xi
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Monte Carlo methods in Bayesian Inference

 Given a Bayesian Network with some nodes 
instantiated in cases where propagation is not feasible 
we can estimate the posterior probabilities of the un-
instantiated variables as follows:  

 1. Draw n samples from the Bayesian network with the    
instantiated variables fixed to their values

 2. Estimate the posterior distributions from the frequencies

 Problem: The state space is big, so we need a very 
large number of samples.
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Markov Chain

 Random sampling from a Bayesian Network may not be 
the best strategy. For efficiency it would be desirable to 
try to pick the most representative samples. 

 One way of doing this is to create a 'Markov Chain' in 
which each sample is selected using the previous 
sample.

 This is the basis of Monte Carlo Markov Chain 
(MCMC) methods.
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Gibbs Sampling in Bayesian Networks

 Here is a simple MCMC strategy:

 Given a Bayesian Network with N unknown variables 
choose an initial state for each variable at random, 
then sample as follows:

 Select one variable at random, say Xi

 Compute the posterior distribution over the states of Xi

 Select a state of Xi from this distribution

 Replace the value of Xi with the selected state

 Loop
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Intuition on Gibbs Sampling

 At every iteration we weight our selection towards the 
 the most probable sample. Hence our samples should 
follow the most common states accurately.

 Moreover, the process is 
– Ergodic: it is aperiodic and it is possible to reach every 

state; 
– Balanced: it will converge to a stable distribution given 

enough samples.
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Example of Gibbs Sampling

 

A S 

T L 

X D 

B 

P(S) 

P(L|S) P(B|S) 

P(D|T&L&B) 
P(X|T&L) 

P(T|A) 

P(A) 

Let’s look at how we can use Gibbs Sampling to solve 
the Asia Network. Remember that for certain 
instantiations Pearl’s propagation algorithm will fail 
due to loops
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Example of Gibbs Sampling

The first step is to instantiate any known variables to 
their measured state. In the example below we assume 
that A, T, X and D are instantiated. This is an example 
where Pearl’s algorithm fails.
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Example of Gibbs Sampling

Choose a random instantiation for all the unknown 
variables, in this case S, L and B

Select one unknown variable at random, for example 
B, and identify its Markov blanket
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Example of Gibbs Sampling

Re-compute B from its Markov Blanket, suppose that 
we obtain P’(B) = (0.7, 0.3)

Select a state of B weighted by its distribution (select 
b0 with probability 0.7 and b1 with probability 0.3)
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Example of Gibbs Sampling

Suppose we selected b0, the state of the network is 
our first sample - {a1,b0,d1,l1,s1,t0,x0}

We are only interested in the unknown states so our 
sample is really just {b0,l1,s1}
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Example of Gibbs Sampling

Now just repeat the process

Select one unknown variable at random, for example 
S, and identify its Markov blanket
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Example of Gibbs Sampling

Re-compute S from its Markov Blanket, suppose that 
we obtain P’(S) = (0.4, 0.6)

Select a state of S weighted by its distribution (select 
s0 with probability 0.4 and s1 with probability 0.6)
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Example of Gibbs Sampling

Suppose we selected s0, the state of the network is 
our second sample - {b0,l1,s0}
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Example of Gibbs Sampling

 We keep repeating to 
gather more samples

 {b0,l1,s1}

 {b0,l1,s0}

 {b0,l1,s0}

 {b1,l1,s0}

 {b1,l0,s0}

 {b1,l0,s0}

 {b1,l0,s0}

 {b1,l1,s0}

We compute the probabilities 
from the sample frequencies.

After drawing eight samples 
we have:

P’(B) = (3/8, 5/8)

P’(L) = (3/8, 5/8)

P’(S) = (7/8, 1/8)
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Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm provides a general 
criterion for accepting new samples such that the 
sample chain is both ergodic and balanced.

Gibbs sampling as described above is a special case of 
the Metropolis Hastings algorithm, but it may 
require more samples to reach convergence.
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Original Metropolis Algorithm (1953)

 (N. Metropolis, M. Rosenbluth, A. Rosenbluth, E. Teller and A. 
Teller)

 Given a chain of samples X0, X1, X2 . . Xt , and a 
method to compute sample Xt+1 from Xt:

 If a sample has a probability P(Xt+1)

 A probability ratio is taken to be:

       = P(Xt+1) / P(Xt)

 Calculate a probability of acceptance  pt = min(,1)

 Add Xt+1 to the chain with probability pt
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Hastings' Generalisation

 Compute the “proposal density”  Q(Xt+1| Xt) which is 
the probability of sampling Xt+1from Xt

 The probability ratio is taken to be:

       = (P(Xt+1)/Q(Xt+1 | Xt))  / (P(Xt)/ Q(Xt | Xt+1))
  = P(Xt+1) Q(Xt | Xt+1) / P(Xt) Q(Xt+1 | Xt) 

 Calculate a probability of acceptance  pt = min(,1)

 Add Xt+1 to the chain with probability pt
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Metropolis-Hastings Algorithm

For the Gibbs sampling example we can easily 
calculate the proposal density Q(Xt+1 | Xt)

eg: for sample [b0, d1, s1] what is the probability of the 
next sample being [b0, d0, s1]?

 We have a probability of 1/3 of selecting variable D for 
re-calculation. 

After selecting D and recalculating its distribution we 
have the probability of selecting d0 (as opposed to 
d1).
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Re-sampling

 Re-sampling gives us a way of estimating statistical 
properties from a finite data set.

 Instead of using the data once we use samples from it 
several times over to estimate properties like model 
accuracy and parameter variance
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Hold out methods

 Hold out methods are the most useful techniques 
involving re-sampling.

 Typically they involve holding back a proportion of 
the data to use in testing a model.



Intelligent Data Analysis and Probabilistic Inference Lecture 12 Slide No 26

26

The leave one out method

 Computing model accuracy

 For each data point Dj:
 Compute the model parameters with all the other data 

points

 Calculate the prediction accuracy for Dj

 The average prediction accuracy is used as an 
estimate of the accuracy of the model trained on all 
the data.
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Cross validation

 Leave one out is computationally expensive. Cross 
validation reduces the computation costs.

 Divide the data into k similarly sized subsets
 For each subset

 Compute the model parameters using all the other subsets

 Find the average prediction accuracy for the subset

 Hold out methods can be used to choose between 
competing models.
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Bootstrapping

 Bootstrapping is a method that can be used to 
estimate statistical properties from a finite data set.

 For example consider a data set in two variables.

 One statistic we may be interested in is the mutual 
information:

 Dep(X,Y) = P(X&Y) log2( P(X&Y)/(P(X)P(Y)) )
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Computing the Mutual Entropy (revision)

 We used mutual entropy to find the maximum 
weighted spanning tree as follows:

 Compute the X-Y co-occurrence matrix

 Normalise the matrix to form the joint probability matrix 
P(X&Y).

 Marginalise P(X&Y) to find P(X) and P(Y)

 Calculate the mutual entropy of X and Y

 But this only gives us one value.
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Bootstrap data sets

 Given a data set with m data points, a bootstrap data 
set is a data set of m points chosen at random with 
replacement from the original data set.

etc

 1 x1 y1 
2 x1 y2 
3 x2 y1 
4 x2 y1 
5 x2 y2 
6 x2 y2 
7 x3 y1 
8 x3 y1 
 
Original 
Data Set 

 3 x2 y1 
5 x2 y2 
1 x1 y1 
3 x2 y1 
7 x3 y1 
2 x1 y2 
5 x2 y2 
4 x2 y1 
 
Bootstrap 1 

 1 x1 y1 
4 x2 y1 
7 x3 y1 
2 x1 y2 
7 x3 y1 
2 x1 y2 
5 x2 y2 
3 x2 y1 
 
Bootstrap 2 

 5 x2 y2 
2 x1 y2 
1 x1 y1 
7 x3 y1 
6 x2 y2 
8 x3 y1 
3 x2 y1 
1 x1 y1 
 
Bootstrap 3 
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Bootstrapping to find variance

 Given a data set D in X-Y
 Select n equi-probable bootstrap data sets from D

 Calculate the statistic of interest (Dep(X,Y)) from each 
bootstrap set

 Find the mean and variance of the estimate
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Estimating the variance from the Bootstraps

 

Original 
Data set 

First 
Bootstrap 
Data set 

Second 
Bootstrap 
Data set 

Third 
Bootstrap 
Data set 

0.098 

0.266 

0.266 

=0.21 (±0.075) 
 = 0.0056 

=0.204 

Calculate 
Mutual 
Entropy 

Resample 
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Bagging: Bootstrap-aggregating

 Objective - to reduce the variance component of 
prediction error.

 Method - Create a set of predictors using bootstrap 
samples of the data set. Aggregate (average) the 
predictions to get a better estimate.

 Aggregating clearly does not affect bias, but does 
reduce variance.
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Boosting: 

Bagging creates bootstrap data sets by sampling the 
original with equal probability.

Boosting changes the probability of selection, eg:

 Sample a bootstrap data set Ti

 Test the data set on Ti

 Increase the probability of selection for misclassified 
points

Boosting is sometimes called Arcing (Adaptive 
Resampling and Combining)
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Aggregating in General

 Bagging and Boosting are both found to reduce the 
variance of prediction error in simulation studies.

 They are therefore proposed as good techniques for 
building classifiers, particularly with models that 
suffer from high variance (neural networks).
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