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Principal Component Analysis
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Introduction

Karl Pearson (1857-1936)
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Introduction

What is PCA?

Principal Component Analysis, or simply PCA, is a
multivariate statistical procedure concerned with
representing the covariance structure of a set of
variables through a small number of linear
combinations of these variables.
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PCA in Outline

For a given data set

We determine the direction
where the variation is the great-
est

Then we find the direction
where the remaining variation
is the greatest

We continue the process and
thus find the coordinate system
that most compactly represents
the data.
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PCA in Outline

In algebraic terms, principal components are
particular linear combinations of the original
variables that form a projection that best represents
the data in a least-square sense.

Geometrically, these linear combinations represent
a new coordinate system obtained by translating
and rotating the original one. The new axes can be
used to determine the directions with maximum
variability of the sample data.
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PCA in Outline

In computational terms the principal components
are found by calculating the eigenvectors and
eigenvalues of the data covariance matrix.

The eigenvector with the largest eigenvalue is the
direction of greatest variation.

&c.
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A brief review of Eigenvectors

Let A be an n×n matrix. The eigenvalues of A are
defined as the roots of:

determinant(A−λI) = |(A−λI)|= 0

where I is the n×n identity matrix. This equation is
called the characteristic equation and has n roots.
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A brief review of Eigenvectors

Let λ be an eigenvalue of A. Then there exists a vector x
such that

Ax = λx

The vector x is called an eigenvector of A associated with
the eigenvalue λ . Ordinarily we normalise x so that it
has length one, that is,

x ·xT = 1
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Eigenvectors and Diagonalisation

Suppose we have a 3×3 matrix A with eigenvectors x1,
x2, x3, and eigenvalues λ1, λ2, λ3 so:

Ax1 = λ1x1 Ax2 = λ2x2 Ax3 = λ3x3

Putting the eigenvectors into a column matrix gives:

A

 x1 x2 x3

=

 x1 x2 x3

 λ1 0 0
0 λ2 0
0 0 λ3


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Eigenvectors and Diagonalisation

Writing:

Φ =

 x1 x2 x3

 Λ =

 λ1 0 0
0 λ2 0
0 0 λ3


we get:

AΦ = ΦΛ

and since we normalised the eigenvectors we know that:

ΦΦ
T = Φ

T
Φ = I

thus:
Φ

TAΦ = Λ

A= ΦΛΦ
T

Intelligent Data Analysis and Probabilistic Inference Lecture 14 Slide 13



Eigenvectors of Covariance Matrices

Let Σ be an n×n covariance matrix. There is an
orthogonal n×n matrix Φ whose columns are
eigenvectors of Σ and a diagonal matrix Λ whose diagonal
elements are the eigenvalues of Σ, such that:

Φ
T

ΣΦ = Λ

The linear transformation Φ takes our variables to a new
coordiante system where they are uncorrelated. The
correlation matrix of our data in the new axis system is Λ

which has only diagonal elements.
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PCA in Practice

Given our data set in the axis system X = [x1,x2 · · ·xn ]:

1. Calculate the means (µx1,µx2 · · ·) and the covariance Σ.

2. Calculate the eigenvectors of Σ: Φ = [φ1, φ2 · · · ].

3. Any point px in the [x1,x2 · · · ]
axis system is transformed to
the point pφ in the [φ1,φ2, · · · ]
system with the equation:

pφ = (px−µx) ·Φ

where µx = (µx1,µx2 · · ·).
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Exemplar: Face recognition

The objectives of using PCA in face reconition are:

1. Data Reduction

2. Feature Selection
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Exemplar: Face recognition

In image recognition an input image with n pixels can be
treated as a point in an n-dimensional space called the
image space. The coordinates of this point represent the
values of each pixel of the image and form a vector

px = (i1, i2, i3, ...in)

obtained by concatenating the rows (or columns) of the
image matrix.
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Converting an Image to a vector

Given a greyscale image of, for example, 128 by 128
pixels:

=


150 152 · 151
131 133 · 72
· · · ·

144 171 · 67


128×128

We concatinate each row to make a 16384 vector

[150,152, · · ·151,131,133, · · ·72, · · ·144,171, · · ·67]16K
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Redundant Information

Face images are highly redundant:
• All the background pixels are the same
• Each subject has the same facial features
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Dimension Reduction

In the data space each pixel is a variable, so the
dimension of the space is very high (min 16K).
Dimension reduction is achieved by PCA. Let an N ×n
data matrix D be composed of N input face images with
n pixels. Each row is one image of our data set.

D =


150 152 · · · 254 255 · · · 252
131 133 · · · 221 223 · · · 241
· · · · ·
· · · · ·

144 171 · · · 244 245 · · · 223


N ×n
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Mean Centring the data

Suppose the mean of the columns of D (the average
image) is:

[120 140 · · · 230 230 · · · 240]

The origin is moved to the mean of the data by
subtracting this average image from each row. This
creates the mean centred data matrix:

U =


30 12 · · · 24 25 · · · 12
11 −7 · · · −9 −7 · · · 1
· · · · ·

24 31 · · · 14 15 · · · −17


N ×n
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Calculating the covariance matrix

The covariance matrix Σ can be calculated easily from
the mean centered data matrix:

Σ =UTU/(N −1)

N is the number of data points (images) and the
covariance matrix has dimension n×n.
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Finding the Eigenvectors and Eigenvalues

We use the techniques covered earlier in this lecture to
find Φ and Λ that satisfy:

Σ = ΦΛΦ
T

As before, we normalise the eigenvectors φi so that they
form an orthonormal basis:

∀φi φj ∈Φ, φi ·φj =

{
1 if i = j
0 if i 6= j
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Data Reduction

Eigenvectors with low eigenvalues
contribute little information in the
data representation. Data reduc-
tion is achieved by ignoring the
eigenvectors with low eigenvalues.

The set of m(m < n) eigenvectors of Σ which have the m
largest eigenvalues, minimises the mean square
reconstruction error over all choices of orthonormal basis
of size m.
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Data Reduction

Although n variables are required to reproduce an
original sample X exactly, much of the significant
variability in the data can be accounted for by a smaller
number m of principal components.

Thus, the original data set consisting of N examples on n
variables can be reduced to a data set consisting of N
examples on m principal components (eigenvectors).

In face recognition the eigenvectors are often called
eigenfaces.
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Practical Face recognition

As an example we will find the eigenface basis of a set of
fourteen faces images of resolution 384×256. This
initial data set D is sometimes called the training data set.
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What do the eigenfaces look like?

Mean:

The four eigenfaces with the largest eigenvalues:

Intelligent Data Analysis and Probabilistic Inference Lecture 14 Slide 27



How different are the face images?

This is a plot of the fourteen face images on the first
three principal components:
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Reconstructing the face images: example 1

Original:

3 PCs 5 8 11 13
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Reconstructing the face images: example 2

Original:

3 PCs 5 8 11 13

Intelligent Data Analysis and Probabilistic Inference Lecture 14 Slide 30



How many principal components do we need?

There is no definitive answer to this question. We want to
minimise m (the number retained) but maximise the
accuracy of the data representation.

One approach is to see how much of the variance each
principal component accounts for. We can express the
percentage of the total variance accounted for by the ith

eigenvector as:

ri = 100× λi

∑
n
j=1 λj

One heuristic method would be to discard components
where ri falls below a threshold, say 1%.
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Few Samples and many Variables

Face recognition is an example of a small sample size
problem. The number of variables (pixels) n is very large,
but the number of samples (pictures in the data base) N
is much smaller.

Since the covariance matrix Σ is very large (n×n) the
computation of the eigenvectors is difficult.

However, since there are only N samples the rank of the
covariance matrix is at most N −1 and therefore there
are at most N −1 eigenvectors with non-zero eigenvalues.

Intelligent Data Analysis and Probabilistic Inference Lecture 14 Slide 32



Karhunen Loeve Transform

Karhunen and Loeve came up with an ingenious way of
computing principal components efficiently.

Note that the matrix UUT is much smaller than UTU ,
and we can calculate its eigenvectors easily. They satisfy:

UUT
Φ
′ = Φ

′
Λ

Multiplying both sides by UT gives:

UTUUT
Φ
′ =UT

Φ
′
Λ

Adding brackets clarifies that UT Φ′ are the eigenvectors
of UTU :

UTU(UT
Φ
′) = (UT

Φ
′)Λ
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Karhunen Loeve Transform

In summary we find the eigenvectors Φ′ of the small
matrix UUT , then multiply them by UT to find the
eigenvectors of UTU .

The resulting eigenvectors are not orthonormal. To
complete the process we must normalise them. This is
done by dividing each column of UT Φ′ by its magnitude√

(N −1)λi for the scatter matrix or
√

λi for the
covariance matrix.

There are at most N −1 non-zero eigenvalues in UUT ,
but this is not a restriction since, as noted before, the
rank of UTU is at most N −1.
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Correspondence in PCA

In 2D face images the pixels are not usually in
correspondence. That is to say a given pixel [xi ,yi ] may
be part of the cheek in one image, part of the hair in
another and so on.

This means that any linear com-
bination of eigenvectors does
not represent a true face but a
composition of face parts.
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Correspondence in 3D face models

If we represent a face in 3D, then it is possible to
establish a correspondence between each point on the
surface map. Here are two different faces that are in
correspondence.
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PCA on 3D face surface models

We can apply PCA to the 3D surface representation.

The variables are the individual co-ordinates of the
surface points.

A data set is of the form:

[x1,y1,z1,x2,y2,z2,x3, · · ·xN ,yN ,zN ]

The face maps on the previous slide have about 5,000
surface points, hence the number of variables is 15,000.
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Active Shape Models

If the points of each subject are in correspondence, and
the different subjects are aligned as closely as possible in
3D before calculating the PCA, then any reasonable
combination of the eigenvectors will represent a valid
face.

Faces can be created that are not real, but are a linear
combination of those in the data set.

The set of eigenvectors representing surface data in this
manner is called an active shape model
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Active Appearance Models

Texture can be mapped onto a 3D surface map to give it
a realistic face appearance. The texture values (like pixel
values in 2D) can also be included as variables in PCA.

Models of this sort are called active appearance models.
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