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Lecture 15:

Linear Discriminant Analysis

Many thanks to Carlos Thomaz who authored the original 
version of these slides
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The story so far:

 Let us start with a data set which we can write as a 
matrix:

 Each row is one data point, each column is a variable, 
but take care sometimes the transpose is used

 
  x1,1 x1,2  x1,n 

D = x2,1 x2,2  x2,n 
  x3,1    
      
  xN,1   xN,n 
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The mean adjusted data matrix

 We form the mean adjusted data matrix by subtracting 
the mean of each variable

 i is the mean of the data items in column i of D

 
  x1,1 - 1 x1,2 - 2  x1,n - n 

U = x2,1 - 1 x2,2 - 2  x2,n  -  n 
  x3,1 - 1    
      
  xN,1 - 1   xN,n - n 
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Covariance Matrix

 The covariance matrix can be formed from the 
product:

  = (1/(N-1)) UT U 

 Here is one of the worlds great mysteries: 

      why is it 1/(N-1) not 1/N?
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Alternative notation for Covariance

 Covariance is also expressed as an outer product:

nx1 column 
vector

1xn row 
vector

nxn matrix

Sum over the 
data points


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Scatter Matrix

 A scatter matrix is un-normalised, using the data 
matrix formulation:

            S = UT U 
 is a scatter matrix but 

            = Scov = UT U /(N-1)
 is the corresponding covariance matrix

 All the projection basis can be calculated on either co-
variance or scatter matrices
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Projection
 A projection is a 

transformation of data points 
from one axis system to 
another.

 Finding the mean adjusted 
data matrix is equivalent to 
moving the origin to the 
centre of the data. Projection 
is then carried out by a dot 
productX1

X2

xi



xi-

(xi-1

1

2
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Projection Matrix

 A full projection is defined by a matrix in which each 
column is a vector defining the direction of one of the 
new axes.

 = [ 1, 2, 3,  . . . m ] 

 Each basis vector has the dimension of the original 
data space. The projection of data point xi is: 

      yi = (xi - ) 
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Projecting every point

 The projection of the data in mean adjusted form can 
be written:

 U UT)T

 Projection of the covariance matrix is

  T    = T (1/(N-1)) UT U
 = (1/(N-1)) T UT U
 = (1/(N-1)) (U )T U
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Projecting every point

 The projection of the data in mean adjusted form can 
be written:

 U UT)T

 Projection of the covariance matrix is

  T    = T (1/(N-1)) UT U
 = (1/(N-1)) T UT U
 = (1/(N-1)) (U )T U

 which is the covariance matrix of the projected points

(       )(       )
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Orthogonal and Orthonormal

 For most practical cases we expect the projection to 
be  orthogonal 

       (all the new axes are at right angles to each other) 

 and orthonormal 

       (all the basis vectors defining the axes are unit

              length) thus:

 T   = I
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PCA

 The PCA projection is the one that diagonalises the 
covariance matrix. That is it transforms the points 
such that they are independent of each other.

 T  = 

 We will look at another projection today called the 
LDA.
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Introduction to LDA

 Ronald A. Fisher, 1890-1962

 “The elaborate mechanism built 
on the theory of infinitely large 
samples is not accurate enough 
for simple laboratory data. Only 
by systematically tackling small 
sample problems on their merits 
does it seem possible to apply 
accurate tests to practical data.”

 1936
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Introduction to LDA

 What is LDA?

 Linear Discriminant Analysis, or simply LDA, is a 
well-known feature extraction technique that has been 
used successfully in many statistical pattern 
recognition problems.  

 LDA is sometimes called Fisher Discriminant 
Analysis (FDA).
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Motivation

 The primary purpose of LDA is to separate samples of 
distinct groups by transforming then to a space which 
maximises their between-class separability while 
minimising their within-class variability.

 It assumes implicitly that the true covariance matrices 
of each class are equal because the same within-class 
scatter matrix is used for all the classes considered.
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Geometric Idea

x2 

 LDA:  
2x

1x x1
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Geometric Idea

 PCA: )

x2







 LDA:  
2x

1x x1
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Method 

 Each class mean and class covariance, and the grand 
mean vector are given respectively by:
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Method

 Let the between-class scatter matrix Sb be defined as

 and the within-class scatter matrix Sw be defined as

 where xi,j is an n-dimensional data point j from class i, 
Ni is the number of training examples from class i, 
and g is the total number of classes or groups. 





g

i

T
iiib xxxxNS

1

))((


 


g

i

T
iji

N

j
iji

g

i
iiw xxxxSNS

i

1
,

1
,

1

)()()1(



Intelligent Data Analysis and Probabilistic Inference Lecture 15  Slide No 20

Method (cont.)

 The main objective of LDA is to find a projection 
matrix lda that maximises the ratio of the determinant 
of Sb to the determinant of Sw (Fisher’s criterion), that 
is
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Intuition

 The determinant of the co-variance matrix tells us 
how much variance a class has.

 Consider the co-variance matrix in the PCA 
(diagonal) projection - the determinant is just the 
product of the diagonal elements which are the 
individual variable variances.

 The determinant has the same value under any ortho-
normal projection.
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Intuition (cont)

 So Fisher’s criterion tries to find the projection that:
 Maximises the variance of the class means

 Minimises the variance of the individual classes

 

Best (LDA) projection 
axis for separating the 
classes 

Poor projection axis for 
separating the classes 
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Method (cont.)

 It has been shown that Plda is in fact the solution of the 
following eigensystem problem:

           Sb  -  Sw = 0
 Multiplying by the inverse of Sw

         Sw-1 Sb  - Sw-1 Sw  = 0

         Sw-1 Sb  -  = 0

         Sw-1 Sb  =   
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Standard LDA

 If Sw is a non-singular matrix then the Fisher’s 
criterion is maximised when the projection matrix lda 
is composed of the eigenvectors of

 with at most (g-1) nonzero corresponding 
eigenvalues.

 (since there are only g points to estimate Sb)

bw SS 1
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Classification Using LDA

 The LDA is an axis projection.

 Once the projection is found all the data points can be 
transformed to the new axis system along with the 
class means and covariances.

 Allocation of a new point to a class can be done using 
a distance measure such as the Mahalanobis distance.
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LDA versus PCA

 LDA seeks directions that are efficient for 
discriminating data whereas PCA seeks directions that 
are efficient for representing data.

 The directions that are discarded by PCA might be 
exactly the directions that are necessary for 
distinguishing between groups.
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Limited Sample Size Problem

 The performance of the standard LDA can be 
seriously degraded if there are only a limited number 
of total training observations N compared to the 
dimension of the feature space n.

 Since Sw is a function of (N - g) or fewer linearly 
independent vectors, its rank is (N - g) or less. 
Therefore, Sw is a singular matrix if N is less than 
(n+g), or might be unstable unless N >> n.
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Two-stage feature extraction technique

 First the n-dimensional training samples from the 
original vector space are projected to a lower 
dimensional space using PCA 

 Then LDA is applied next to find the best linear 
discriminant features on that PCA subspace. This is 
often called the Most Discriminant Features (MDF) 
method.
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Two-stage feature extraction technique (cont.)

 Thus, the Fisher’s criterion is maximised when the 
projection matrix lda is composed of the eigenvectors 
of

             (Tpca Sw pca )-1(Tpca Sb pca )

 with at most (g – 1) nonzero corresponding 
eigenvalues. Therefore the singularity of Sw is 
overcome if the number of principal components (p)

)( gNpg 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

