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Lecture 16:

Small Sample Size Problems

(Covariance Estimation)

Many thanks to Carlos Thomaz who authored the original 
version of these slides



Intelligent Data Analysis and Probabilistic Inference Lecture 16  Slide No 2 

Statistical Pattern Recognition

 The Gaussian distribution is written:

 we can use it to determine the probability of 
membership of a class given  and . For a given class 
we may also have a prior probability, using i for class i
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The Bayes Plug-in Classifier (parametric)

Taking logs so that we do not have an infinite space
the rule becomes:

Assign pattern x to class i if:

We can rearrange the constants to get:
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The Bayes Plug-in Classifier (parametric)

Taking logs so that we do not have an infinite space
the rule becomes:

Assign pattern x to class i if:

We can rearrange the constants to get:

The classification depends strongly on j
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The Bayes Plug-in Classifier (parametric)

 Notice the relationship between the plug in Bayesian 
classifier and the Mahalanobis distance. 

 The equation has a term for the prior probability of a 
class and for the determinant of the covariance matrix 
(ie the total variance in the class), but is otherwise the 
same.
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Problems with the Bayes Plug-in Classifier

 1. The distribution of each class is assumed to be 
normal.

 2. A separate co-variance estimate is needed for each 
class.

 3. The inversion of the co-variance matrix is needed - 
computationally expensive for large variable 
problems
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Parametric vs Non-Parametric classifiers

 The parameters referred to in the Bayes plug-in 
classifier are the mean  and covariance  which are 
estimated from the data points belonging to the class.

 A non parametric classifier makes its probability of 
membership estimates from each individual point 
rather than from parameters calculated from them.

 However, it is still desirable to have a “kernel” 
function to transform distance from a point to 
probability of membership.
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Parametric Classifier illustration

 The probability of membership is calculated from 
a class distribution with parameters  and 

x-

,  calculated 
from the class 
data points

point to classify
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Non-Parametric Classifiers

 Probability of membership based on the average 
probability using each class member as mean and 
a given kernel covariance. 

point to classify

x-xi

kernel  used to calculate a 
probability from each point 
in the class.
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The Parzen Window Classifier (non-parametric)

   h is a class specific variable called the 
“window” which acts a little like the total 
variance in the parametric classifier. A smaller 
h implies a lower variance kernel.
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The Parzen Window Classifier (non-parametric)

   h is a class specific variable called the 
“window” which acts a little like the total 
variance in the parametric classifier

  We need to be able to estimate i accurately to 
use either parametric or non-parametric 
classifiers
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In summary: Statistical Pattern Recognition

Information about class membership is contained in 
the set of class conditional probability density 
functions (pdfs) which could be:
specified (parametric) or 
calculated from data (non-parametric). 

In practice, pdfs are usually based on Gaussian 
distributions, and calculation of the probability of 
membership involves the inverse of the sample group 
covariance matrix.
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Small sample size problems

 In many pattern recognition applications there is a 
large number of features (n) and the number of 
training patterns (Ni) per class may be significantly 
less than the dimension of the feature space.

 Ni << n !

This means that the covariance matrix will be singular 
and cannot be inverted.
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Examples of small sample size problems

 1. Biometric identification

 In face recognition we have many thousands of 
variables (pixels). Using PCA we can reduce these to 
a small number of principal component scores 
(possibly 50).

 However, the number of training samples defining a 
class (person) is usually small (usually less than 10).
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Examples of small sample size problems

 2. Microarray Statistics

 Microarray experiments make simultaneous 
measurements on the activity of several thousand 
genes - up to 500,000 probes.

 Unfortunately they are expensive and it is unusual for 
there to be more than 50-500 repeats (data points)
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Small Sample Size Problem

 Poor estimates of the covariance means that the 
performance of classical statistical pattern recognition 
techniques deteriorate in small sample size settings.

i has n variables and Ni data points
 i is singular when Ni < n 
 i is poorly estimated when Ni is not >> n
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Small sample size problems

 So, we need to find some method of estimating the 
co-variance matrix in small sample size problems.

 The problem was first addressed by Fisher and has 
been the subject of research ever since.
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Pooled Covariance Estimation

Fisher’s solution is to use a pooled covariance 
estimate. In the LDA method this is represented in 
the Sw scatter matrix, in general for g classes:

 Assumes equal covariance for all groups
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 Covariance estimators: van Ness (1980)

 If we take a small sample size covariance estimate and 
set all the non diagonal elements to zero then the 
resulting matrix will generally be full rank.

 This approach retains the variance information for use 
in a non-parametric kernel.

  
 is a scalar smoothing parameter selected to 
maximise the classification accuracy
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 Diagonal Covariance Matrices

 Note that:

 Is almost certain to be full rank in any practical 
example. 

 If it is not this implies that there is a zero diagonal 
element which means that the corresponding variable 
does not change throughout the data. In this case it 
can be removed.
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Shrinkage (Regularisation)

 The general idea of shrinkage is to stabilise a poor matrix 
estimate by blending it with a stable known matrix. 

 For example given a singular small sample size covariance 
matrix i we can make it full rank by forming the estimate:

 Where  is the shrinkage parameter and  the average 
variance.

 As  is increased from 0 to 1 the inverse of the estimate can 
more readily be calculated, but the covariance information is 
gradually destroyed.
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Shrinkage towards the pooled estimate

 If a pooled estimate can be made (as it can in 
biometrics) then a better strategy is to shrink towards 
it rather than the identity matrix.

 The problem in regularisation is how to choose the 
shrinkage parameter 

 One solution is to maximise the classification 
accuracy
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Covariance Estimators: Friedman’s RDA (1989)

Friedman proposed a composite shrinkage method 
(regularised discriminant analysis) that blends the 
class covariance estimate with both the pooled and the 
identity matrix.

 Shrinkage towards the pooled matrix is done by one 
scalar parameter 



Intelligent Data Analysis and Probabilistic Inference Lecture 16  Slide No 24 

Covariance Estimators: Friedman’s RDA (1989)

Shrinkage towards the identity matrix is then 
calculated using a second scalar parameter .

 where  is a scaling constant chosen to make the 
magnitude of the second term comparable to the 
variance in the data using:

 The trace of a matrix is the sum of its diagonal 
elements, so  represents the average variance.
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Covariance Estimators: Friedman’s RDA (1989)

We need to determine the best values for the 
shrinkage parameters, but this is data dependent.

  The method adopted is to use an optimisation grid. We 
choose as large a set of values of (,) covering their 
range [0..1], and use hold out methods to calculate 
the classification accuracy at each value.

The process is very computationally intensive. 
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Covariance Estimators: Friedman’s RDA (1989)

Notice that shrinkage towards the diagonal destroys 
covariance information, however:

Given a good pooled estimate we expect the shrinkage 
towards the identity to be small.

  

With a poor sample group and pooled estimate the 
shrinkage towards the identity matrix at least provides 
a full rank co-variance estimate.
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Covariance Estimators: Hoffbeck (1996)

 A more computationally effective approach is the 
leave one out covariance estimate (LOOC) of 
Hoffbeck:

 This is a piecewise solution. An optimisation grid is 
calculated, this time in one dimension, to find 
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A Maximum Entropy Covariance Estimate

 A new solution by Carlos Thomaz (2004)

 It is based on the idea that

 “When we make inferences based on incomplete 
information, we should draw them from that 
probability distribution that has the maximum entropy 
permitted by the information we do have.” 

 [E.T.Jaynes 1982]
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Loss of Covariance Information

In all the methods we have seen so far there is a trade 
off between the amount of covariance information 
retained and the stabilisation of the matrix.

If we use the van Ness technique and replace

                       i by diag(i)

   we make the matrix full rank but we remove all the 
covariance information
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Loss of Covariance Information

Similarly if we use shrinkage to the diagonal:

    or (worse still) to the identity

 we loose some of the covariance information
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Loss of Covariance Information

Even shrinking towards the pooled estimate looses 
covariance information. 

We are averaging class specific information with 
pooled information hence we are loosing some of the 
defining characteristics of the class 
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Loss of Covariance Information

To understand the process in more depth let us 
consider mixing the class and pooled covariance 
matrices (similar to the first step of RDA).

In this approach we are looking for an optimal convex 
combination of  and  
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Loss of Covariance Information 

Now let’s consider what will happen if we diagonalise 
the mixture co-variance (ie find the orthonormal 
eigenvectors).
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Loss of Covariance Information

 Think about the terms

 The problem is that  and  are the same for all 
variables and therefore cause loss of information.

 If  i is close to zero then we are simply reducing the 
variance contribution from the pooled matrix.

 If  i is large then we are changing its value from the 
class specific value to the pooled matrix value.
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A Maximum Entropy Covariance

 Let an n-dimensional variable Xi be normally 
distributed with true covariance matrix i. Its entropy 
h can be written as:

 which is simply a function of the determinant of i 
and is invariant under any orthonormal tranformation.
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A Maximum Entropy Covariance 

 In particular we can choose the diagonal form of the 
covariance matrix

 Thus to maximise the entropy we must select the 
covariance estimation of i that gives the largest 
eigenvalues.
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A Maximum Entropy Covariance (cont.)

 Considering linear combinations of Si and Sp
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A Maximum Entropy Covariance (cont.)

 Moreover, as the natural log is a monotonic increasing 
function, we can maximise

 However,

 Therefore, we do not need to choose the best parameters  
and  but simply select the maximum variances of the 
corresponding matrices.
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A Maximum Entropy Covariance (cont.)

 The Maximum Entropy Covariance Selection (MECS) 
method is given by the following procedure:

 1. Find the eigenvectors  of i + p

 2. Calculate the variance contribution of each matrix
       

 3. Form a new variance matrix based on the largest values

 4. Inverse project the matrix to find the MECS covaraince 
estimate:
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Visual Analysis

    The top row shows the 5 image training 
examples of a subject and the 
subsequent rows show the image 
eigenvectors (with the corresponding 
eigenvalues below) of the following 
covariance matrices:

(1) sample group;
(2) pooled;
(3) maximum likelihood (rda); 
(4) maximum classification mixture (looc)

(5) maximum entropy mixture. 
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Visual Analysis (cont.)

The top row shows the 5 image training 
examples of a subject and the subsequent 
rows show the image eigenvectors (with 
the corresponding eigenvalues below) of 
the following covariance matrices:

(1) sample group;
(2) pooled;
(3) maximum likelihood (rda);
(4) maximum classification mixture (looc); 

(5) maximum entropy mixture. 
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Visual Analysis (cont.)

 
 

The top row shows the 3 image training 
examples of a subject and the subsequent 
rows show the image eigenvectors (with the 
corresponding eigenvalues below) of the 
following covariance matrices:

(1) sample group;
    (2) pooled;
    (3) maximum likelihood (rda);
    (4) maximum classification mixture (looc);

    (5) maximum entropy mixture. 
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Visual Analysis (cont.)

 
 

The top row shows the 3 image training 
examples of a subject and the subsequent 
rows show the image eigenvectors (with the 
corresponding eigenvalues below) of the 
following covariance matrices:

(1) sample group;
    (2) pooled;
    (3) maximum likelihood (rda);
    (4) maximum classification mixture (looc); 

    (5) maximum entropy mixture. 
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