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Lecture 17:

Support Vector Machines

Many thanks to Carlos Thomaz who authored the original 
version of these slides
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Introduction

 Vapnik’s philosophy, 1990’s

 “If you possess a restricted amount of information for 
solving some problem, try to solve the problem 
directly and never solve a more general one as an 
intermediate step.  It is possible that the available 
information is sufficient for a direct solution but is 
insufficient for solving a more general intermediate 
problem.”
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Introduction

 Vapnik’s philosophy, 1990’s

 “In contrast to classical methods of statistics where in 
order to control performance one decreases the 
dimensionality of a feature space, the Support Vector 
Machine (SVM) dramatically increases 
dimensionality and relies on the so-called large 
margin factor.”
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Introduction

 What is SVM?

 SVM is primarily a two-class* classifier that 
maximises the width of the margin between classes, 
that is, the empty area around the decision boundary 
defined by the distance to the nearest training 
patterns.

 * It is feasible to extend the system to more than 2 classes
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For example

 If {xi} is a set of points in n-dimensional space with 
corresponding classes {yi:yi  {-1,1}} then the 
training algorithm attempts to place an hyperplane 
between points where yi = 1 and points where yi = -1.

 Once this has been achieved a new pattern x can then 
be classified by testing which side of the hyper-plane 
the point lies on.
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Geometric Idea
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Linear SVM

 Let’s start with the simplest case: linear machines 
trained on separable data. Suppose the training data 

 (x1,y1), …, (xN,yN), x  Rn, y  {–1, +1}

 can be separated by a hyperplane

 (w . x) + b = 0.

 We say that this set is separated by the optimal 
hyperplane if it is separated without error and the 
distance between the closest point to the hyperplane is 
maximal. 
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The Separating Hyperplane

 What would happen 
if all the points not on 
these two boundary 
hyperplanes (H1,H2) 
were removed ?

Origin

w (normal to the hyperplane)

Hyperplane   w.x + b = 0
H1

H2
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The Separating Hyperplane

Origin

w (normal to the hyperplane)

Hyperplane   w.x + b = 0
H1

H2

 Those training points 
which lie on one of the 
hyperplanes (H1,H2) and 
whose removal would 
change the solution found 
are called support vectors.
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The Separating Hyperplane (cont.)

 To describe the separating hyperplane let us suppose 
that all the training data satisfy the following 
constraints:

 (w . xi) + b  +1 for yi = +1.

 (w . xi) + b  – 1 for yi = – 1.

 which can be combined into one set of inequalities:

 yi (w . xi + b) – 1   0 for i = 1, …, N.
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The Separating Hyperplane (cont.)

 Now consider the points for which the equality in the 
previous equations holds. These points lie either on

 H1: (w . xi) + b = 1   or   H2: (w . xi) + b = – 1

 with normal w and perpendicular distance from the 
origin respectively (1 – b)/|w| and (– 1 – b)/|w|.  

 Therefore the shortest distance from the separating 
hyperplane to the closest positive (negative) example 
is 1/|w| and the margin is simply 2/|w|.
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Finding the separating hyperplane

 The distance separating the classes is 2/|w|, the 
optimal hyperplane therefore is the one for which |w| 
is minimal.

 Finding the hyperplane is formulated as the following 
optimisation problem:

      Minimise |w|2 = w.w subject to constraints

      yi (w . xi + b) – 1   0  for all points (xi yi)

 The solution uses Lagrange Multipliers
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Lagrange Equation (primal)

 For equality constraints, the Lagrange multipliers are 
unconstrained. This gives Lagrangian:

 Optimisation: Lp should be minimised with respect to 
w and b subject to the constraints i  0 for all i  {1,
…,N}.
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Nonlinear SVM

 The nonlinear SVM implements the following idea.

 It maps the training points xi into a high-dimensional 
feature space through some non-linear mapping 
chosen a priori.  

 In this higher dimensional space, an optimal 
separating hyperplane is constructed.



Intelligent Data Analysis and Probabilistic Inference Lecture 17  Slide No 18

Geometric Idea

      Original Space          Feature Space

                                                  (higher dimension)
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VC (Vapnik and Chervonenkis) Dimension

 To show that the idea works we define the VC 
dimension:

 The VC dimension of a class of functions {fi} is the 
maximum number of points that can be separated 
(shattered) into two classes in all possible ways.
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VC Dimension (an example)

 Suppose the class {f} is straight lines on a 2D plane,
 Any three (non collinear) points can be separated

 Only these possibilities exist
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VC Dimension Example

 However for four points there is a case that cannot be 
separated by a single line:

 Hence the VC dimension of a line is 3
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VC Dimension (cont.)
 It can be proved that:

 The VC dimension of the set of oriented   
hyperplanes in Rn is n+1.

So, four points may be shattered (divided into two 
classes in all possible ways) in a three dimensional 
space. 

   

  In general a set of n data points can be shattered in an 
n-1 dimensional space.
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VC Dimension (cont.)

 To increase the dimension of the data points we can 
define a mapping from an n-dimensional space to the 
m-dimensional space where m > n:

  : Rn  Rm

 Then we can use the same training algorithm as the 
linearly separable case by replacing

 xi . xj with (xi) . (xj)

 in all the equations. As a result the separating 
surface’s normal vector w will be in Rm. 
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Kernels

 However, mapping a point into a higher dimensional 
space might be too calculation- and storage-intensive 
to be practical.

 “Kernel functions used in support vector machines are 
functions calculated in the original space that are 
equivalent to the dot product of the mapped vectors in 
the higher dimensional space”.  
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Kernels (cont.)

 Therefore if there were a Kernel function K such that

 K(xi, xj) = (xi) . (xj)

 we only need to use K in the training algorithm and would 
never need to explicitly do the mapping.

 Thus if we replace xi 
. xj with (xi , xj) everywhere in the 

training algorithm, the algorithm will produce a SVM which 
lives in a high dimensional space. 

 All the linear considerations hold since we are still doing a 
linear separation but in a different space.
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Kernels (cont.)

 Having solved for w using the kernel function, in 
place of the dot product, we can make our decision on 
on unknown point xu by finding the sign of:

K(w,xu) + b

 replacing the term
 w.xu + b

That we used for the linear SVM.

So at no point do we explicitly need to use the lifting 
function 
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Kernels (cont.)

 Suppose that our vectors are in R2 and we choose

 It’s easy to find a mapping  from R2 to R3 such that

 We can choose 
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Kernels (cont.)

 Note that neither the mapping  nor the higher 
dimensional space are unique. We could equally well 
have chosen the space to again be R3 and

 or to be R4 and
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Kernels (cont.)

 Since we do not actually need to find the lifting 
function , but only use the kernel in the computation 
an interesting question is what functions can we use 
as kernels?

 The answer is given by Mercer’s condition.
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Mercer’s condition

 If K is a function on vectors u and v then there exists a 
mapping into some vector space with an expansion:

          K(u,v) = (u) . (v)

 if and only if for any g(u) such that

 is finite then
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Some Examples of Non-linear Kernels

 - Polynomial:

 - Gaussian Radial Basis Function:

 - Sigmoidal (hyperbolic separating surface):
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The radial basis kernel

 The radial basis kernel is interesting because it 
implies that the lifting function  will raise the 
dimension of the data space infinitely.

 This can be seen by that fact that there is an infinite 
series expansion of ex which is required to gather the 
dot product terms.

 Thus the radial basis function can solve any 
classification problem regardless of size.
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SVM for the XOR Problem

 The exclusive OR is the simplest problem that cannot 
be solved using a single 2D linear discriminant 
operating on the features.
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SVM for the XOR Problem

 We choose the quadratic polynomial kernel:
 K(u,v) = (u.v + 1)2

 For our two dimensional problem we can write
 K(u,v) = (u1v1 + u2v2 +1)2

            = (u1v1)2+(u2v2)2+2u1v1u2v2+2u1v1+2u2v2+1

 A possible lifting function is
 (x1,x2) = (x1

2, x2
2,2x1x2 ,2x1 ,2x2 ,1)

 It is easily seen that
 K(u,v) = (u).(v)
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SVM for the XOR Problem

 Using
 (x1,x2) = (x1

2, x2
2,2x1x2 ,2x1 ,2x2 ,1)

 The classes are completely separable with

  w = {0,0,1,0,0,0} in the high dimension space.

 
 Point Lifted point coordinate 
 x1 x2 l1=x1

2 l2=x2
2 l3=2x1x2 l4=2x1 l5=2x2 l6=1 

1 1 1 1 2 2 2 1 Class 1 

-1 -1 1 1 2 -2 -2 1 
1 -1 1 1 -2 2 -2 1 Class 2 

-1 1 1 1 -2 -2 2 1 
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SVM for the XOR Problem

 Plotting the l3 and l4 axes we get: 
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Examples of the behaviour of kernels

 In the following examples the behaviour of different 
kernels is shown. The picture is coloured according to 
the value of the term (K(w,x) +b). 

 Cyan to dark blue: 0, increasing negatively

 Yellow to dark red: 0, increasing positively
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Polynomial Kernels 

       p=2           p=3 p=5

 Images from Tom Weedon’s report
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Gaussian Kernels

       =5           =20 =100

 Images from Tom Weedon’s report
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Sigmoidal Kernels

[=[0.00003,-5]   [0.00001,-5]  [0.000001,-5]   

 Images from Tom Weedon’s report
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Final Comment

 An important benefit of the SVM approach is that the 
complexity of the resulting classifier is characterised 
by the number of support vectors rather than the 
dimensionality of the transformed space.

 As a result, SVMs tend to be less prone to problems 
of overfitting than some other methods.
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And that is “nearly” the end of the course

 There will not be a tutorial on Wednesday 4th March.

 There will be a revision session on Monday 16th March 
at 14.00. Provisionally the venue will be 308, but check 
the course webpage for confirmation.
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