Tutorial 8: Principal Component Analysis (PCA)

As we have seen in the lecture, PCA is a multivariate statistical technique that is concerned with explaining the variance-covariance structure of a set of variables through a few linear combinations of these variables.

1. Describe a step-by-step procedure that calculates a PCA transformation matrix P of the n dimensional sample X. This transformation P should retain as many principal components k as necessary in order to explain a certain amount v (for instance, 90%) of the total sample variance. Your first step could be "calculate the covariance matrix S of X ".
2. Consider the following covariance matrix

$$
S=\left[\begin{array}{cc}
1 & 4 \\
4 & 100
\end{array}\right]
$$

We will analyse its corresponding correlation matrix and check that the principal components obtained from covariance and correlation matrices are different.

2a. Calculate the derived correlation matrix R. The correlation matrix entries are of the form

$$
\mathrm{r}_{\mathrm{i}, \mathrm{j}}=\sigma_{\mathrm{i}, \mathrm{j}} /\left(\sqrt{ } \sigma_{\mathrm{i}, \mathrm{i}} \sqrt{ } \sigma_{\mathrm{j}, \mathrm{j}}\right)
$$

2b. Calculate the eigenvalues λ_{1} and λ_{2} of S using the formula $\operatorname{det}(S-\lambda I)=0$, where I is the 2×2 identity matrix.

2c. Calculate the eigenvectors ϕ_{1} and ϕ_{2} associated with these eigenvalues by solving the following equations:

$$
\begin{aligned}
& S \phi_{1}=\lambda_{1} \phi_{1} \\
& S \phi_{2}=\lambda_{2} \phi_{2}
\end{aligned}
$$

where $\phi^{T}=\left[x_{1}, x_{2}\right]$.
2d. Compute the proportion of the total sample variance explained by the first principal component ϕ_{1} of S. Is there any variable (x_{1}, x_{2}) that dominates ϕ_{1} ? Explain.

2e. Analogously calculate the eigenvalue-eigenvector pairs of R (that is, repeat steps 2 b and 2 c).
2f. Compute the proportion of the total sample variance explained by the first principal component ξ_{1} of R. Is there any variable (x_{1}, x_{2}) that dominates ξ_{1} ? Explain.

2 g . What have you learned?

