Tutorial 8: Solution

- 1. A simple procedure that contains the main steps in calculating P can be described as follows:
 - (a) Calculate the covariance matrix S of X
 - (b) Find the eigenvectors Φ and eigenvalues Λ of S;
 - (c) Order the eigenvector-eigenvalue pairs $(\lambda_1, \phi_1), (\lambda_2, \phi_2) \cdots (\lambda_n, \phi_n)$ such that $\lambda_1 \ge \lambda_2 \cdots \ge \lambda_n$
 - (d) Form the matrix $P = P = [\phi_1, \phi_2, \cdots , \phi_k]$ where:

$$\sum_{j=1}^{k} \lambda_j / \sum_{i=1}^{n} \lambda_i \ge \nu$$

2. Assuming that the correlation matrix is written as:

$$S = \left[\begin{array}{cc} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{array} \right]$$

(a) The correlation matrix can be written:

$$R = \begin{bmatrix} \sigma_{11}/(\sqrt{\sigma_{11}}\sqrt{\sigma_{11}}) & \sigma_{12}/(\sqrt{\sigma_{11}}\sqrt{\sigma_{22}}) \\ \sigma_{21}/(\sqrt{\sigma_{22}}\sqrt{\sigma_{11}}) & \sigma_{22}/(\sqrt{\sigma_{22}}\sqrt{\sigma_{22}}) \end{bmatrix} = \begin{bmatrix} 1 & 0.4 \\ 0.4 & 1 \end{bmatrix}$$

- (b) $\lambda_1 = 100.16$ $\lambda_2 = 0.84$
- (c) $\phi_1 = \begin{bmatrix} 0.040 \\ 0.999 \end{bmatrix} \qquad \phi_2 = \begin{bmatrix} 0.999 \\ -0.04 \end{bmatrix}$
- (d) $\lambda_1/(\lambda_1 + \lambda_2) = 100.16/101 = 0.992$ x_2 completely dominates ϕ_1 because of its large variance compared to x_2 .
- (e) $\lambda_1 = 1.4$ $\lambda_2 = 0.6$ $\phi_1 = \begin{bmatrix} 0.707\\ 0.707 \end{bmatrix}$ $\phi_2 = \begin{bmatrix} 0.707\\ -0.707 \end{bmatrix}$
- (f) $\lambda_1/(\lambda_1 + \lambda_2) = 1.4/2 = 0.7$ When the covariance matrix is normalised into the correlation matrix the resulting variables x_1 and x_2 contribute equally to the principal components determined from *R*.
- (g) This exercise demonstrates that the normalisation is not inconsequential. Variables should be normalised if they are measured on scales with widely differing ranges. Otherwise, we should expect a principal component with a heavy weighting of the variable with the relatively large variance.