Tutorial 9 solution

1. In the original data space the pooled covariance estimate Σ_p has at most a rank *N-g*. Therefore the scatter matrix $S_w = (N-g) \Sigma_p$ similarly has maximum rank of *N-g*, thus the PCA projection can have at most *N-g* non-zero eigenvectors. Therefore the dimension of P is (at best) ($n \ge N-g$).

2. $Xp = X_{Nxn} \cdot P_{nx(N-g)}$. Xp therefore has dimension Nx(N-g). The LDA transformation matrix is limited by the number of groups because the rank of S_b is g-1. Therefore the dimension of L is ($N-g \ge g \le g-1$).

3. $Xf = Xp_{Nx(N-g)} \cdot L_{(N-g)x(g-1)}$. The final dimension of the data matrix is the dimension of Xf, that is, $(N \times g^{-1})$.

4. $\mathbf{Y} = \mathbf{X} \mathbf{f}_{N\mathbf{x}(g-1)} \cdot \mathbf{L}_{(g-1)\mathbf{x}(N-g)}^{\mathsf{T}} \cdot \mathbf{P}_{(N-g)\mathbf{x}(n)}^{\mathsf{T}}$. No, Y is an approximation of X because in the PCA step we have had to discard some principal components to overcome the singularity of S_w . We have used (N - g) principal components rather than (N - 1).