

DOC: Interactive Computer Graphics Lecture 1 Graphical Output and Input Page: 1

Lecture 1: Graphical Output and Input

Device Dependence
In keeping with good programming practice it is generally accepted that graphics programs should, as far as
possible be device independent, that is to say we should write our programs avoiding where possible any
specific hardware features. This of course is difficult to achieve in practice.

Most graphics output devices are of the
Raster type, and plot points. They
include most visual display units and
laser and ink jet printers. Each dot (or
pixel) making up the picture is mapped
directly into a random access memory,
which may be accessed by the cpu
either directly or through control
registers. The number of bits utilised
for each pixel determines the range of
intensities that can be used. (1 bit
means the pixel is either on or off, 8
bits allows 0..255 different intensities
(or colours) to be chosen for the pixel).
The number of pixels on the screen is
called the resolution, and is normally
quoted in terms of the x and y

components [XRes,YRes]. In the case of a laser printer the resolution is quoted in dots per inch. At the
lowest level, programming is device dependent. For raster devices we would use a system procedure like:

 SetPixel(XCoord,YCoord,Colour)

to change the colour of a particular pixel. The coordinates used will be actual pixel addresses.

For the most part we do not need to worry about the details of each device, since the operating system takes
care of that through what is called the applications programmer interface or API. This provides
programmers with a set of uniform procedures to draw pictures regardless of the actual device being used as
shown in diagram 1.1. However, the API does not really provide us with complete device independence.
For example, if we were to write our
program with all quantities specified in
pixels, then it would not change if the
user re-sized the window. In different
systems there are different addressing
conventions for pixels as illustrated in
diagram 1.2. To write transportable
software we need to remove this device
dependence from the majority of our
graphics software. For some
applications, such as computer games,
we may need to utilize the whole
screen, in which case we need our
software to cope with changes of
resolution. All this means that we
cannot effectively write a program
using pixel addresses.

Graphics
Driver

1

Application Programmer's Interface (API)

Graphics
Driver

2

Graphics
Driver

n

Graphics Program

Uniform Graphics Commands

Hardware
Specific
Commands

Operating
System

Diagram 1.1: The Application Programmer's Interface

y

y
x

x

Diagram 1.2
Pixel addressing conventions vary from system to system

100

50

50

100

DOC: Interactive Computer Graphics Lecture 1 Graphical Output and Input Page: 2

World Coordinate System

For real graphics applications, programmers require that anything that is drawn in a window, should be
independent of the position of that window on the screen and its size. The world coordinate system provides
this independence. It allows any coordinate values to be applied to the window to be drawn. It is defined
through a procedure:

 SetWindowWorldCoords(WXMin,WYMin,WXMax,WYMax)

We may think of a window in two ways. One is an area of the screen, in which the coordinate system is
measured in pixels, the other is like a window in a room through which we view the outside world. The
latter will have dimensions measured in some real world metric such as centimeters. The
SetWindowWorldCoords command is simply defining the real world coordinates of the window which will
be used by all the drawing procedures applied to that window. These world coordinates are chosen
irrespective of how the screen window is to be moved or re-sized interactively. They will be chosen for the
convenience of the applications programmer. If the task is to produce a visualisation of a house then the
units could be meters. If it is to draw accurate molecular models the units will be µm. If the application
program works for the most part in these units, and converts them to pixels at a late, well defined stage, then
it will be easy to transport it to other systems or to upgrade it when new graphics hardware becomes
available. Even using world coordinates, however, there will be a problem over the aspect ratio
(Xlength/Ylength) distortion of a window. If the picture is created to fit a square window exactly, then
inevitably it will be distorted if the window is resized and becomes rectangular.

Graphics Primitives
Having defined the real world coordinates of a window, the programmer can now make use of device
independent procedures to draw pictures. Typical examples might be:

DrawLine(x1,y1,x2,y2)
DrawCircle(x1,y1,r)
DrawPolygon(PointArray)
DrawText(x1,y1,"A Message")

 etc
Any parts of a drawing which do not appear in the specified window are clipped so that a picture will not
exceed its window.

Device independent graphics systems make extensive use of attributes (global variables) to simplify the
parameter passing. In graphics a line for example can have a thickness, a style (dotted dashed or solid) and a
colour. To specify all of these every time a line is drawn would be tedious, hence they are stored as
attributes, and any drawing uses the current attibutes. Attributes would be manipulated by procedures such
as:

SetLineColour(ColourNumber)
SetPolygonFillStyle(FillStyleNumber)
SetFont(FontName)

(Note: the names for these procedures will vary from system to system. The names given in these lectures
are for illustrative purposes, and you should always read the manual carefully).

Normalisation
In order to implement a world coordinate system we need to be able to translate between world coordinates
and the device or pixel coordinates. However, we do not necessarily know what the pixel coordinates of a
window are, since the user can move and resize it without the program knowing. The first stage is therefore
to find out what the pixel coordinates of a window are, which is done using an enquiry procedure.

 GetWindowPixelCoords(DXmin, DYmin, DXmax, DY max)

In the Windows API this procedure is called GetClientRect.

DOC: Interactive Computer Graphics Lecture 1 Graphical Output and Input Page: 3

Having established the user (or world) coordinate system, graphics procedures which use it must have their
output data translated into the appropriate device coordinates. This is done by simple ratios, referring to
Diagram 1.3 we have for the X direction:

 (Xw-WXmin)/(WXMax-WXMin) = (Xd - DXMin)/(DXMax-DXMin)

Which gives us the equations:
 Xd = Xw * A + B;
 Yd = Yw * C + D;
where
 A = (DXmax-DXmin)/(WXmax-WXmin)
 B = - WXmin (DXmax-DXmin)/(WXmax-WXmin) + DXmin

and a similar equation pair defines C and D. The normalisation is performed directly between the world
coordinate system and the window pixel coordinates. Whenever a window is re-sized it is necessary to re-
calculate the constants A,B,C and D.

We are now in a position to see how the world coordinate system is implemented. For example, the
procedure to draw a line using world coordinates would be implemented like this.

void DrawLine(float xs, float ys, float xf, float yf)
{ /* Clip any part of the line outside the window */
 /* Normalise: Calculate the pixel coordinates */
 /* Draw the line using the API */
}

Viewports

Some graphics systems allow a further level or organisation to the applications programmer by providing
viewports. These are sub areas of the window where the picture is being drawn. The normal convention is
that the whole window is taken to have bottom left coordinate value (0.0,0.0) and top right coordinate
(1.0,1.0). The primitive:

 SetViewport(VXmin,VYmin,VXmax,VYmax)

simply defines the area where the window coordinates are to be drawn. Having obtained the values DXmax
DXmin, DYmax, DYMin from the operating system, the pixel coordinates of the corners of the viewport
can be simply obtained, and the normalisation transformation carried out as above.

Diagram 1.3
Normalisation

[Xd,Yd]

[Xw,Yw]

Wxmin Wxmax

Dxmin Dxmax

Window, World
Coordinates

Screen

Viewport

Pixel Coords

DOC: Interactive Computer Graphics Lecture 1 Graphical Output and Input Page: 4

Input Devices

The most important input device is the mouse, which records the distance moved in the X and Y directions.
In the simplest form it provides at least three bytes of information (usually through a serial device); the x
distance moved, the y distance moved and the button status. The mouse causes an interrupt every time it is
moved, and it is up to the system software to keep track of the changes. Note that the mouse is not
connected with the screen in any way. Either the operating system or the application program must achieve
the connection by drawing the visible marker.

Callback
 The operating system must share control of the mouse with the application, since it needs to act on
mouse actions that take place outside the graphics window. For instance, processing a menu bar or
launching a different application. It therefore traps all mouse events (ie changes in position or buttons) and
informs the program whenever an event has taken place. The application program must, after every action
carried out, return to a callback procedure (or event loop) to determine whether any mouse action (or other
event such as a keystroke) has occurred. The callback is the main program part of any application, and, in
simplified pseudo code, looks like this:
 while (executing) do
 { if (menu event) ProcessMenuRequest();
 if (mouse event)
 { GetMouseCoordinates();
 GetMouseButtons();
 PerformMouseProcess();
 }
 if (window resize event) RedrawGraphics();
 }
The procedure ProcessMenuRequest will be used to launch all the normal actions, such as save and open
and quit, together with all the application specific requests. The procedures GetMouseCoordinates and
PerformMouseProcess will be used by the application writer to create whatever effect he wants, for
example, moving an object with the mouse. This may well involve re-drawing the graphics. If the window
is re-sized then the whole picture will be re-drawn.

Device Independent Input
Typically, a user will move a visible marker on the screen, and click the button when a position is chosen.
This identifies a pixel, and for device independent input, its address can be inverse transformed into the
users world coordinate system. Two forms of visible marker are common. The first is called a locator, and
can be implemented by a cross hair or pointer. The second is called a rubber band, and is indicated by a line
(or perhaps a box) from a fixed pixel to the pixel corresponding to the mouse register. In most cases the
system software will provide these for a graphics application programmer. In the most usual case request
mode is used meaning that the applications program calls a procedure such as:
 RequestLocator(X,Y)
and then waits while the system sets up a visible marker and waits for a mouse button to be pressed, at
which time it reads the mouse registers, inverse transforms them into world coordinates, and returns the
values X and Y. Other input modes allow continuous sampling of devices or queuing of events by the
system for processing later by the applications program.

