
   
DOC Computer Graphics, Lecture 3 Page: 1 

Lecture 3: Scene Transformation and Animation 
 
Flying Sequences 
We will now consider a most important subject, namely, scene transformation. In any viewer centered 
application, such as a flight simulator or a computer game, we need to view the scene from a moving 
position. As the viewpoint changes we transform all the coordinates of the scene such that the viewpoint is 
the origin and the view direction is the z axis, before projecting and drawing the scene. Let us suppose that, 
in the coordinate system in which the scene is defined we wish to view it from the point L = [Lx,Ly,Lz], 
looking along the direction d = [dx,dy,dz]. The first step is to move the origin to L for which we use the 
transformation matrix AA. This is shown in diagram 3.1 step 1. Following this, we wish to rotate about the y-
axis so that d lies in the plane x=0. Using the fact that d is defined by the co-ordinates [dx dy dz] and using 
the notation v2 = dx

2 + dz
2  this is done by matrix BB, and is illustrated by diagram 3.1 step 2. 

Notice that we have avoided computing the Cos and Sin functions for this rotation by use of the direction 
cosine. To get the direction vector lying along the z axis a further rotation is needed. This time it is about 
the x axis using matrix CC. This is illustrated by Diagram 3.1 step 3. 

Finally the transformation matrices are combined into one, and each point of the scene is transformed. 
 
TT = AA  *  BB  *  CC        
and so for all the points      
P = P * TT 

 
 
 
 
 
 

AA = 1 0 0 0 BB = dz/v 0 dx/v 0
0 1 0 0 0 1 0 0
0 0 1 0 - dx/v 0 dz/v 0

-Lx - Ly - Lz 1 0 0 0 1

CC = 1 0 0 0
0 v dy 0
0 -dy v 0
0 0 0 1

 

d ψ 

dy 

Z

Y 

|d|=1 

Diagram 3.1 
Transformation of the 

viewpoint 

y 
z 

x 

d 

L y 
z 

x 

Viewing direction 

Step 1: Move origin to the required viewpoint Step 3: Rotate about X  

Cos ψ = √(dx*dx+dz*dz)/|d|  
Sin ψ = dy/|d| = dy 

Step 2: Rotate about Y  

θ 

dz 

dx 
X 

Z 

Cos θ = dz/√(dx*dx + dz*dz)  
Sin θ = dx/√(dx*dx + dz*dz) 



   
DOC Computer Graphics, Lecture 3 Page: 2 

Problems with verticals 
The concept of vertical is missing from 
the above analysis, and needs attention 
since it is easy to invert the vertical. 
This will be easily observed in the 
trivial example of Diagram 3.2 where 
an arrow whose base is at [0,0,-l] is 
being observed from the origin. A 
transformation based on rotating about 
the y axis first yields the correct 
solution. However, a transformation 
involving rotation about the x axis first 
inverts the image. 
 
Rotation about a general line 
A very similar problem concerns animation of objects in a fixed scene. Let us suppose that we want to 
rotate one sub-object about some line in the Cartesian space where the scene is defined. Let  the line be:  L 
+ µd  where  L = [Lx,Ly,Lz] is the position vector of a point on the line and d is a unit direction vector along 
the line. In essence we follow exactly the process. We use a translation to move the origin so that it is on the 
line (matrix AA) followed by two rotations to make the z axis coincident with the direction vector d (matrices 
BB and CC). Now we can perform a rotation of the object about the z-axis using the standard rotation matrix 
RRzz defined previously. Now we need to restore the coordinate system as it was, such that the viewpoint is 
the same as before. To do this we simply invert the transformation matrices A B and C. As before we 
multiply all the individual transformation matrices together to make one matrix which is then applied to all 
the points. 
 
TT = AA  *  BB  *  CC  *  RR  *CC  -1  * BB  -1    *AA  -1    and so for all the points     P := P * TT 
 
Projection by Matrix Multiplication 
If we use homogeneous co-ordinates then it is also possible to express projection by the multiplication of a 
projection matrix. Placing the centre of projection at the origin and using z=f as the projection plane gives 
us matrix MMp for perspective projection. Matrix MMo is for orthographic projection: 

 
It is not immediately obvious that matrix MMp produces the correct perspective projection. Let us transform 
an arbitrary point V with homogeneous co-ordinates [x, y, z, 1] by using matrix multiplication. For the 
projected point P we get 
 P = V * MMp= [x, y, z, z/f] 
This point must be normalised into a Cartesian coordinate. To do this we divide the first three co-ordinates 
by the value of the fourth and we get: 
 PH = [x*f/z, y*f/z, f, 1] 
which is the correct answer. It is interesting to note that the projection matrix is obviously a singular matrix 
(it has a row of zeros) and, therefore, it has no inverse. This must be so because it is impossible to 
reconstruct a 3D object from its 2D projection without other information. Projections can of course be 
combined with the other matrices. Indeed the popularity of the orthographic projection is that it simplifies 
the amount of calculations since the z row and column fall to zero. Although a simplification applies when 
the perspective projection is used, there is also the need to normalise the resulting homogenous coordinates, 
and this adds to the computation time. 
 
Homogenous coordinates 
 We now take a second look at homogeneous coordinates, and their relation to vectors. Previously, 
we described the fourth ordinate as a scale factor, and ensured that, with the exception of the projection 
transformation, it was always normalised to 1.  As an alternative, we can consider the fourth ordinate as 

 

Viewing Direction [0,0,-1] 

Y 

Z 

Rotate 
about Y 

Y 

Z

Rotate about X 

Vertical Inverted 

Diagram 3.2: 
Transformations and Verticals

Y 

Z

Vertical Preserved 

MMp= 1 0 0 0 MMo= 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 1/f 0 0 0 0
0 0 0 0 0 0 0 1



   
DOC Computer Graphics, Lecture 3 Page: 3 

indicating a type as follows. Informally we acknowledge that a normal Cartesian coordinate is a special 
form of vector, which we call a position vector, and usually denote using capital letters. Hence, we can say 
that a normalised homogenous coordinate is the same as a positon vector.  
 By contrast, if we consider the case where the last ordinate is zero - [x,y,z,0] - we find that we 
cannot normalise this coordinate in the usual way because of the divide by zero, so clearly a homogenous 
coordinate of this form cannot be directly associated with a point in Cartesian space. However, it still 
contains information in the sizes of x y and z, and hence we can consider it to be a direction vector. It has 
magnitude and direction, but not position. Thus homogenous coordinates fall into two classes, those with 
the final ordinate non-zero, which can be normalised into position vectors, and those with zero in the final 
ordinate which are direction vectors, and which also have direction magnitude. 
 Consider now how vector addition works with these definitions. If we add two direction vectors, we 
add the ordinates as before and we obtain a direction vector. ie: 
[xi,yi,zi,0] + [xj,yj,zj,0] = [xi+xj, yi+yj, zi+zj,0] 
This is the normal vector addition rule which operates independently of Cartesian space. However, if we 
add a direction vector to a position vector we obtain a position vector or point: 
[Xi,Yi,Zi,1] + [xj,yj,zj,0] = [Xi+xj,Yi+yj,Zi+zj,1] 
This is a nice result, because it ties in with our definition of a straight line in cartesian space being defined 
by a one point and a direction as shown in Diagram 3.3. 

Now, consider a general affine transformation matrix. We ignore the possibility of doing perspective 
projection or shear, so that the last column will always be [0,0,0,1]T, and the matrix will be of the form 
shown in diagram 3.4, with the rows viewed as three direction vectors and a position vector. We ask what 
the individual rows mean, and to see this we consider the effect of the transformation  in simple cases. For 
example take the unit vectors along the Cartesian axes eg: 

In other words the direction vector of the top row represents the direction in which the x axis points after 
transformation, and similarly we find that j= [0,1,0,0] will be transformed to direction [rx,ry,rz,0] and k = 
[0,0,1,0] will be transformed to [sx,sy,sz,0]. Similarly, we can see the effect of the bottom row by 
considering the transformation of the origin which has homogeneous coordinate [0,0,0,1]. This will be 
transformed to [Tx,Ty,Tz,1].  Notice also that the zero in the last ordinate ensures that direction vectors will 
not be affected by the translation, whereas all position vectors will be moved by the same factor. Notice 
also that if we do not shear the object the three vectors q r and s will remain orthogonal so that q•r = r•s = 
q•s = 0.  
 Unfortunately however, this analysis does not help us to determine the transformation matrix. In 
general it would be more natural to assume that we know the vectors u,v, and w which we would like to 
transform into the Cartesian axes i,j,k. This is the case when for example we are transforming a scene 
before viewing it in the normal position for computing a projection, that is with the viewpoint at the origin 
and the viewing direction along the z axis. In this case we need to use the notion of the dot product as a 
projection onto a line. This is most readily seen in two dimensions as indicated in Diagram 3.5.  By 
dropping perpendiculars from the point P to the line defined by vector u and vector v we see that the 
distances from the origin are respectively P•u and P•v. Now, suppose that we wish to rotate the scene so 

 

Diagram 3.3 Adding a direction vector 
to a position vector 

P 

d 

Direction Vector 

Position Vector 

Direction Vector 

Direction Vector 

Diagram 3.4 The composition of an 
affine transformation matrix 

qx qy qz 0 
rx ry rz 0 
sx sy sz 0 
Tx Ty Tz 1 

[1,0,0,0] qx qy qz 0 =     [qx, qy, qz, 0]
rx ry rz 0
sx sy sz 0
Tx Ty Tz 1



   
DOC Computer Graphics, Lecture 3 Page: 4 

that the new x and y axes were the u and v vectors, then the x ordinate would be defined by P•u and the y 
by P•v. 
The generalisation of the result is shown in Diagram 3.6 where the transformation of P into the {u,v,w} axis 
system, translated by vector C, is given by: 

 P'x = (P-C)•u 
 P'y = (P-C)•v 
 P'z = (P-C)•w 
Expressing this as a transformation matrix we get: 

You could verify this by checking that the transformation we developed for a flying system does indeed 
have the direction vector [dx,dy,dz] as its third column. 

Finally here is something especially for those who enjoy mathematics. We will solve the problem 
by flying problem (to view a scene from point C in direction d) by finding the new axis system u,v,w, and 
then deducing the transformation matrix.The direction vector for viewing d = [dx,dy,dz] and this must lie 
along the w  direction, so w = d/|d|. We we first find any two vectors, p and q,which have the same 
directions as u,v, but not necessarily have unit length. We can constrain the system to preserve horizontals 
and verticals in two ways: 
1. p will be in the direction of the new x-axis, so to preserve the horizontal, we choose: py = 0. 
2. q will be the new y axis and should have a positive y component (so that the picture is not upside down, 
so we choose (arbitrarily): qy = 1 
Now we know that, in a left hand axis system: 
 k = i x j so therefore we can write: d = p x q 
since we have not constrained the magnitude of p. Substituting in the cartesian components: 
 p = [px,0,pz] and q = [qx,1,qz] 
and evaluating the cross product we get three Cartesian equations: 
 dx = -pz dy = pz qx - px qz dz = px 
Thus we have solved for vector p = [dz,0,-dx] 
To solve for q we need to express the condition that p and q are orthogonal and so have zero dot product, 
whence: dz qx + 0 - dx qz = 0  or qz = dz qx / dx 
and from the cross product already evaluated  
 dy = pz qx - px qz     =   - dx qx - dz qz     =   - dx qx - dz2 qx/dx  
so qx = -dy dx/(dx2 + dz2) 
and q = (-dydx/(dx2 + dz2), 1, dydz/(dx2 + dz2)) 
finally  we have that: u = p/|p| v = q/|q|  
Thus we can deduce the whole of the transformation matrix.  

 
 

 

P 
v 

u P.v 

P.u 

Diagram 3.5 
The dot product as a projection 

P-C

C

Py

x

z

u
wv

Diagram 3.6  
Change of axes using the dot product 

ux vx wx 0
uy vy wy 0
uz vz wz 0

-C•u -C•v -C•w 1


