

Computer Graphics, Lecture 5 Page: 1

Lecture 5: Texture and Anti-aliasing
 So far, we have considered objects to be made up of points and lines. If we project and
draw these the result may be useful for some purposes, such as engineering drawing. However,
for many applications the result would be a confusion of lines. To make any sense of the scene
we need to draw it such that the faces of our polyhedral objects are opaque. This would eliminate
all the lines that the eye cannot see. The simplest way to achieve this is called the painter's
algorithm. What we do is sort all the polygons into depth order moving away from the
viewpoint. We then draw them, furthest first, but instead of just drawing the edges, we draw a
filled polygon for each. Thus, as the nearer polygons are drawn they replace the hidden parts of
the scene. The same effect can be achieved by using what is called a Z-Buffer. This is simply an
array, the same size as the screen. For each pixel a record is kept of the distance of the point in
the scene that is visible at that pixel. Before the scene is drawn the Z-Buffer entries are all set to
a value greater than the back clipping plane (ie further than the furthest object in the scene).
When a polygon is to be drawn each pixel is checked. If the polygon is nearer than the Z-Buffer
value, the pixel is set. If not the pixel remains unchanged.
 The painter's algorithm and the Z-Buffer produce the same effect, but they have different
implementation characteristics. The painter's algorithm requires the objects to be sorted, whereas
the Z-Buffer does not. However the Z buffer needs checking for every pixel. In practice, the Z-
Buffer is implementatble in hardware, and this means that it can achieve greater speeds than the
painter's algorithm, and so is preferred in most graphics systems.

Texture
 One simple and highly effective way of increasing the realism of any polygon based
scene is to use a texture, rather than a plain colour, when filling in the polygons. Texturing is
essentially a mapping between the texture space, and the polygon. In the simplest case, we are

mapping one rectangular space into
another as shown in Diagram 7.1.

In general however, we need to map
the texture on a general quadrilateral,
and this is done by bi-linear
interpolation. This is simply illustrated
using vectors. As shown in Diagram
7.2 any point in the quadrilateral can
be expressed in terms of the edge
vectors as:
 p = αa + βe

where α and β are in the range [0..1]
 e = b + α(c - b)
so p = αa + βb + αβ(c-b)
Given a pixel position within the four
projected corners of the quadrilateral,
we can write down the edge vectors in
device coordinates, and solve for α
and β, the required roots being in the
range [0..1]. Finally we look up the
value of the pixel at the point [α,β] in
the texture space, or possibly we can
compute the value form a texture
function f(α,β). It will be noted that the

equation for texture mapping is quadratic in nature. The unfortunate consequence of this is that

Texture Definition Space
β

α 2α

1.5β

Texture applied to a polygon

Diagram 7.1 Texture Mapping

a

e

p

P1

P2

P3

P4

c

Diagram 7.2
Bi-linear texture

map

b

Polygon being
textured

α

β

Computer Graphics, Lecture 5 Page: 2

straight line textures in the (α,β) space will become curved when mapped onto the image space.
We note however, that for orthographic projection (which is affine), rectangles in three
dimensional space will project into parallelograms in the image space. For this case, we have
that b=c and the texture equation reduces to:
 p = αa + βb
Which has a simple linear solution. However, it will be noted that in animated games it is rarely
possible to use orthographic projection. This is because frequently the scene has distant parts
which must appear smaller. However, as long as the change in depth of the polygon is small
compared to its distance from the user the distortion of the texture will not be noticeable. The
real problems occur with large polygons in the foreground.
 One important use of texture mapping is to incorporate photographic material in our
polygon rendering system. This has the advantage of adding an enormous amount of detail at a
relatively low computational cost. It can be done in cases where the viewpoint does not change
significantly relative to the polygon. For example, this is true of an airport, where the distant sky
scrapers of a town, and the mountains behind can all be represented with one texture map, taken
straight from a photograph.

Alias Effects
There is however a major problem with texture mapping which is referred to as alias effects.
Basically an alias effect is caused
by under sampling, and is found to
cause difficulties not only in two
dimensional graphics, but also in
sound recording and signal
processing. The problem with
texture can be illustrated by a
simple example. Suppose our
texture is simply vertical stripes as
shown in diagram 7.3. For
simplicity, let us suppose that we
are mapping this texture onto a
polygon which has projected onto a
rectangle in the image. Now
consider moving away from that
polygon being textured. The
number of pixels across will also decrease. It will be seen that as the number of pixels decreases
below a certain limit (six in our example, there are not enough samples to represent the texture,
and the results are unpredictable. The effect is particularly noticeable in animated systems where
a small movement of the viewer may change the number of pixels in a distant polygon from
three to four pixels causing a distant shimmering appearance. Alias effects in 2D also occur
when lines are drawn on raster terminals. The effect is the jagged staircase appearance of lines at
certain angles, as seen in diagram 7.4. As the samples are increased (i.e. a higher resolution

screen is used) so the effect is reduced.

Anti-Aliasing
 There are basically two ways to
anti-alias a picture or a texture map.
These are called super-sampling and
low pass filtering.
 The most effective is super-
sampling in which we increase the

Appearance of the textured

polygon in the image

12 Pixels

6 Pixels

4 Pixels
3 Pixels

Polygon width

Texture

Samples

Diagram 7.3
Alias Effects in Texture Mapping

Diagram 7.4
Alias Effects at straight boundaries in raster images.

Desired Boundaries Pixels Set

Computer Graphics, Lecture 5 Page: 3

number of samples taken and average down the results. The super-sampling algorithm makes use
of the property that alias effects reduce with resolution. If we are applying it to an image to

reduce the effect of jaggies
then the picture is computed at
a higher resolution, say four
times that of the display screen.
Then each 4*4 block of pixels
is averaged to get the actual
pixel value to be set. Diagram
7.5 illustrates the approach for
the boundary of a filled area.
Although super-sampling will
always work well when we are
processing boundaries of fill
areas, it does not prove

satisfactory in cases where thin lines are drawn. The problem is illustrated by Diagram 7.6. Here
it will be seen that only four of the super-samples in a block of sixteen corresponding to a real
pixel will be set, thus the intensity of the whole line will be too low. Moreover, in the case
shown, the alias effects will still be seen in the final image.

The disadvantage of
super-sampling is that
the computation of the
higher resolution image
will take longer. Much
work has gone into ways
of accelerating super
sampling. For example,
it is only necessary to
super sample images
where there are
boundaries or a good
deal of detail.
 The process is similar when applied to texture mapping. For each pixel in the texture map
we take a set of samples (say 16) from the area of the pixel in the texture map and average them.
Thus, the stripes in our example of diagram 7.3 will become just a blend of the two colours for
distant low sampled polygons, and will not cause the disturbing shimmering appearance
mentioned above.
Low pass filtering an image is in essence averaging it locally. The simplest way to achieve this
might, for each pixel, to replace its value with the average of it and its eight neighbours. This
however is not usually done since it can destroy too much of the information in the image.
Instead a weighted average is taken, with the central pixel weighted the highest.
The most common way to do this is to use the following equation:
O(x,y):= I(x-1,y-1)*1/36 + I(x,y-1)*1/9 + I(x+1,y-1)*1/36 +
 I(x-1,y) * 1/9 + I(x,y) * 4/9 + I(x+1,y) * 1/9 +
 (x-1,y+1)*1/36 + I(x,y+1)*1/9 + I(x+1,y+1)*1/36
It is perhaps easier to see the process as placing a 3 by 3 mask over the pixel to be anti-aliased,
and summing the product of the mask value and the pixel value.

1/36 1/9 1/36
1/9 4/9 1/9

1/36 1/9 1/36

Solid lines are
pixel boundaries

Dashed lines are
supersamples

Polygon Boundary

I1

I2

Diagram 7.5: Antialiasing by Supersampling

I1

(13/16)I2 + (3/16)I1

(3/16)I2 + (13/16)I1

Actual Pixel
Intensities I1

Diagram 7.6: Supersampling a thin line

Actual Pixel
intensities

I/4 I/4

0 0 I/4

I/4 I/4

I/4

Computer Graphics, Lecture 5 Page: 4

The process is illustrated in diagram 7.7. The choice of filter values may look curious at first,
however if we factor out 1/36 from the mask we get:

1/36 * 1 4 1
 4 16 4
 1 4 1

From which we see that high computational efficiency can be gained by carrying out most of the
multiplies by shifting. With a little extra hardware the whole process can be reduced to little
more than one divide per pixel. The mask is also a very close approximation to the well known
Gaussian distribution function.

In essence all the low pass filtering does is blur the edges in the picture, while leaving the rest
substantially the same. Although this may seem to destroy detail, it does have beneficial effects
in enhancing visual appearance.

Convolution
mask located
at one pixel

Diagram 7.7:
Anti-aliasing by convolution filtering

Theoretical Line

Pixels set to
intensity I
(others set to 0)

(9/36)I

Final Pixel Intensities

(9/36)I

(21/36)I

(21/36)I

4/9 1/9 1/9

1/9

1/9

1/36 1/36

1/36 1/36

