

DOC: Interactive Graphics Lecture 13 Page: 1

Lecture 13: Introduction to Spline Curves

Splines are used in graphics to represent smooth curves and
surfaces. They use a small set of control points (knots) and a
function that generates a curve through those points. This saves
space in the data base and allows a good deal of flexibility in
design, at the cost of extra computation at run time. We will start
with a simple, but not very useful spline. Taking the equation
y=f(x), we can express f as a polynomial function, say:
 y = a2x2 + a1x + a0
if we now take any three points [x0,y0],[x1,y1] and [x2,y2], we can
substitute then into the equation to get three simultaneous
equations which we can solve for the unknowns a2 a1 and a0. We
now have the equation of a curve interpolating the three points. It
is of course a parabola, or parabolic spline. Notice that we don't
have any control over the curve. There is only one parabola that will fit the data as shown in diagram 1. We
can improve our choice by the simple expedient of using a parametric spline. Let us consider first a
quadratic polynomial spline written in vector notation as:
 P = a2µ2 + a1 µ + a0
For two dimensional curves we have now six unknowns (rather than the three previously) we can use these

extra degrees of freedom to
control the shape of the curve. We
will use the convention that 0<= µ
<=1 over the range of interest.
Hence at µ =0 the curve is at the
first point to be interpolated, and
at µ =1 it is at the last. Now
consider interpolating the three
points as before (P0=[x0,y0],
P1=[x1,y1] and P2=[x2,y2]). We
know that when µ=0 the curve
passes through P0 and so we can
write P0=a0. We also know that
when µ=1 the point passes
through P2 and this gives us the
equation P2 = a2 + a1 + P0
substituting for a0 we get P2-P0 =
a2 + a1. We have now met all our
conditions except that the curve
shall pass through P1. We can

choose µ anywhere in the range 0<µ<1, and get a third equation to solve for the curve parameters. In other
words we can now pick one of a family of curves interpolating the three points, by selecting the value of µ at
P1. Choosing µ =1/4 we get P1-P0 = a2/16 + a1/4, and so on. Further possibilities are shown in figure 2.
Although we have gained more freedom, we do not have any intuitive way of using it, that is to say, we have
no simple way to choose µ to get the type of interpolating spline we want. Moreover, we still face the
problem of having to use ever higher degrees of polynomials for higher numbers of points.

The most robust solution to this problem is to
use spline patches. This means that we define a
different curve between each pair of adjacent
knots, as shown in Diagram 3. This is most
effectively achieved by using cubic spline
patches exactly as we used the quadratic patches.
The reason for choosing a cubic form is so that
we can join the patches smoothly together. Now

P0

P1

P2

y = a2x2 + a1x + a0

Diagram 1 A non parametric spline

P0

P1

P2

 P0 P1 P2
µ 0 1/2 1

P0

P1

P2

 P0 P1 P2
µ 1/2 0 1

P0

P1

P2

 P0 P1 P2
µ 0 1 1/2

P0

P1

P2

 P0 P1 P2
µ 0 1 1/4

Diagram 2: The possibilities offered by parametric splines

P = a2µ2 + a1 µ + a0

Patch 1

Patch 3
Patch 2

Diagram 3: Spline patches

DOC: Interactive Graphics Lecture 13 Page: 2

our equation has four unknowns:
 P = a3 µ3 + a2µ2 + a1µ + a0
So we can choose the gradient at either end of the
patch. Looking at Diagram 4, we see that this can
conveniently be done by taking the difference of
the coordinates on either side of the knot in
question. This however is not the only way of
setting this gradient. If we differentiate the curve
equation we get:
 P' = 3a3 µ2 + 2a2 µ + a1
So, now consider the two ends of a spline patch between Pi and Pi+1, where µ =0 or µ =1. The equations
are:
 Pi = a0
 P'i = a1
 Pi+1 = a3 + a2 + a1 + a0
 P'i+1 = 3a3 + 2a2 + a1
we can write this system of equations in matrix form:

and since the a values are unknown and the P and P' known, we need to invert the matrix to solve for the
parameters of the spline patch.

Notice that we have vector quantities, so, this formulation represents eight equations for the 2D case, and
twelve for the 3D case. However, the matrix is the same for each dimension. For any given set of knots, this
cubic patch method gives a stable, practical solution.

Bezier Curves
One of the simplest ways of approximating a curve was
made popular by Bezier in the context of car body
design. It was based on a mathematical formulation by
Casteljau. A typical Bezier curve is shown in Diagram
5. Here four knots P0, P1, P2, P3 are shown. The
gradient at each end of the Bezier curve is the same as
the gradient of the line joining the first two knots (P0 =
k(P1-P0)) for some constant k (k=the number of knots -
1) . This is an important property as it allows us to join
Bezier patches together smoothly. Computation of the
Bezier Curve may be done in two ways. The first uses
a recursive algorithm based on a method of Casteljau. The idea is illustrated by Diagram 6. For a given value
of µ, say 1/2 we first construct the points on the lines [P0, P1] [P1, P2] and [P2, P3] for the chosen value of µ.
These are labelled as the first set of constructed points, P1,0, P1,1 and P1,2. The new points are joined up and
the same procedure is followed to construct the second set of points P2,0 and P2,1. The process is repeated to
find the point P3,0. As µ varies from 0 - 1 the locus of P3,0 traces out the Bezier Curve. Using a functional
pseudocode which allows us such liberties as scalar and vector multiplications and typed functions, this
algorithm can be written very simply:

1 0 0 0 a0 Pi
0 1 0 0 a1 = P'i
1 1 1 1 a2 Pi+1
0 1 2 3 a3 P'i+1

a 0 1 0 0 0 P i
a 1 = 0 1 0 0 P ' i
a 2 - 3 - 2 3 - 1 P i + 1
a 3 2 1 - 2 1 P ' i + 1

P = a3 µ3 + a2µ2 + a1µ + a0

Diagram 4: Joining Spline patches

P0

P3

P1

P2
Gradient P1' = (P2 - P0)/2

P2' = (P3 - P1)/2

Diagram 5 A typical four point Bezier Curve

P0

P3

P2

P1

DOC: Interactive Graphics Lecture 13 Page: 3

function Casteljau (var P : knots; N,r : integer; µ: real) : point;
begin
 if (r = 1)
 then Casteljau := (1- µ)*P[N] + µ *P[N+1]
 else Casteljau := (1- µ)*Casteljau(P,N,r-1, µ)+ µ*Casteljau(P,N+1,r-1, µ)
end

and the curve can be drawn with:

for j:=1 to L do
begin
 locus:=casteljau(Knot_array,0,N,j/L)
 drawto(locus[x],locus[y])
end

Note that here, and for all subsequent
treatment of splines we will use a set of
N+1 knots, labelled 0 to N.

Blending
Another way to view a Bezier curve is to
think of it as a blend of its knots. This
can be clearly seen when we consider applying the Casteljau algorithm to the degenerate case of two knots.
This gives us the parametric line equation:
 P = (1- µ)P0 + µ P1
in which we are linearly blending the two position vectors to produce a third. The parameter µ may be
thought of as measuring the distance along the line. Like the curve constructed using the Casteljau
algorithm, most approximations consist of a blend of the values of the knots. For more than two points more
complex blending is required. This leads us to the iterative formulation of the Bezier Curve.

 N

P(µ) = Σ Pi W(N,i, µ)
 i=0

where W(N,i, µ) is called the Bernstein blending function
 W(N,i, µ) = NCi µ i(1- µ)N-i
 NCi = N!/((N-i)! * i!)
notice that we are using a parameter as before and for
 µ = 0 P(0) = P0
 µ = 1 P(1) = PN
 0 < µ < 1 P(µ) = some blend of all Pi
The iterative equation for the Bezier curve can be computed slightly more efficiently in terms of space than
the recursive form, though in the 2D case this is not likely to
be significant, since it is rare to use Bezier curves for more
than a few points. The iterative solution, though less elegant,
generalises to surface construction more easily, and so tends
to be used in preference.

Characteristics of Bezier Curves
As previously mentioned, Bezier curves have their end
gradient clamped to the slope of the end line segments, and,
beyond the ends they blend the positions of all the points.
Since Bezier Curves are a blend of all their control points
there is little local control over a part of the curve. Figure 7
shows how a large number of control points tends to be
ineffectual with Bezier curves. Moving the intermediate
points has little effect, and it is not possible to create a curve

P0,0

P0,3

P0,2

P0,1

P3,0

P2,0
P2,1

P1,0

P1,1

P12

Diagram 6: Casteljau's construction of the Bezier Curve

Diagram 7
Lack of local control in Bezier Curves

DOC: Interactive Graphics Lecture 13 Page: 4

which wiggles with any degree of complexity. This problem can offset to some degree by piecing together a
number of sections, as we did for the cubic patches.

Relation between Bezier Curves and Cubic Patches

We noted previously that the order of the Bezier curve is one less than the number of knots, so for four knots
we have a cubic spline. This will be seen by expanding the iterative form of the Bezier curve:

 3

P(µ) = Σ Pi W(3,i, µ)
 i=0

for the case of four knots:
 P(µ) = P0(1- µ)3 + 3 P1 µ (1- µ)2 + 3 P2 µ2 (1- µ) + P3 µ3
which expands into the form
 P(µ) = a3 µ3 + a2 µ2 + a1µ + a0
where a3 = P3 - 3P2 + 3P1 - P0
 a2 = 3P2 - 6P1 + 3P0
 a1 = 3P1 - 3P0
 a0 = P0
so, we can look at it as just a cubic spline patch between P0 and P3, with two shape control points, P1 and P2
which are manipulated by the designer.

The same method can be applied to the Casteljau construction by expanding the recursion backwards:
 P3,0 = µ P2,1 + (1-µ) P2,0
 = µ (µ P1,2 + (1-µ) P1,1) + (1-µ) (µ P1,1 + (1-µ) P1,0)
 = µ2 P1,2 + 2µ(1-µ) P1,1 + (1-µ)2 P1,0
 = µ2 (µ P0,3 + (1-µ) P0,2) + 2µ(1-µ) (µ P0,2 + (1-µ) P0,1) + (1-µ)2 (µ P0,1 + (1-µ) P0,0)

if we drop the first subscript, which indicated the construction level of the Casteljau algorithm we get

 = µ2 (µ P3 + (1-µ) P2) + 2µ(1-µ) (µ P2 + (1-µ) P1) + (1-µ)2 (µ P1 + (1-µ) P0)
 = P0(1- µ)3 + 3 P1 µ (1- µ)2 + 3 P2 µ2 (1- µ) + P3 µ3

as we had for the blending formulation.

So we can think of a four point Bezier curve as a cubic spline patch with shape control. The curve goes
through points P0 and P3 and by picking up points P1 and P with a mouse and moving them we can control
the shape as desired.

