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Lecture 13: Introduction to Spline Curves 
 
Splines are used in graphics to represent smooth curves and 
surfaces. They use a small set of control points (knots) and a 
function that generates a curve through those points. This saves 
space in the data base and allows a good deal of flexibility in 
design, at the cost of extra computation at run time. We will start 
with a simple, but not very useful spline. Taking the equation 
y=f(x), we can express f as a polynomial function, say: 
 y = a2x2 + a1x + a0 
if we now take any three points [x0,y0],[x1,y1] and [x2,y2], we can 
substitute then into the equation to get three simultaneous 
equations which we can solve for the unknowns a2 a1 and a0. We 
now have the equation of a curve interpolating the three points. It 
is of course a parabola, or parabolic spline. Notice that we don't 
have any control over the curve. There is only one parabola that will fit the data as shown in diagram 1. We 
can improve our choice by the simple expedient of using a parametric spline. Let us consider first a 
quadratic polynomial spline written in vector notation as: 
 P = a2µ2 + a1 µ + a0 
For two dimensional curves we have now six unknowns (rather than the three previously) we can use these 

extra degrees of freedom to 
control the shape of the curve. We 
will use the convention that 0<= µ 
<=1 over the range of interest. 
Hence at µ =0 the curve is at the 
first point to be interpolated, and 
at µ =1 it is at the last. Now 
consider interpolating the three 
points as before (P0=[x0,y0], 
P1=[x1,y1] and P2=[x2,y2]). We 
know that when µ=0 the curve 
passes through P0 and so we can 
write P0=a0. We also know that 
when µ=1 the point passes 
through P2 and this gives us the 
equation P2 = a2 + a1 + P0 
substituting for a0 we get P2-P0 = 
a2 + a1. We have now met all our 
conditions except that the curve 
shall pass through P1. We can 

choose µ anywhere in the range 0<µ<1, and get a third equation to solve for the curve parameters. In other 
words we can now pick one of a family of curves interpolating the three points, by selecting the value of µ at 
P1. Choosing µ =1/4 we get P1-P0 = a2/16 + a1/4, and so on. Further possibilities are shown in figure 2. 
Although we have gained more freedom, we do not have any intuitive way of using it, that is to say, we have 
no simple way to choose µ to get the type of interpolating spline we want. Moreover, we still face the 
problem of having to use ever higher degrees of polynomials for higher numbers of points. 

 
The most robust solution to this problem is to 
use spline patches. This means that we define a 
different curve between each pair of adjacent 
knots, as shown in Diagram 3. This is most 
effectively achieved by using cubic spline 
patches exactly as we used the quadratic patches. 
The reason for choosing a cubic form is so that 
we can join the patches smoothly together. Now 
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Diagram 2: The possibilities offered by parametric splines 

P = a2µ2 + a1 µ + a0 

 

Patch 1 

Patch 3 
Patch 2 

Diagram 3: Spline patches 
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our equation has four unknowns: 
 P = a3 µ3 + a2µ2 + a1µ + a0 
So we can choose the gradient at either end of the 
patch. Looking at Diagram 4, we see that this can 
conveniently be done by taking the difference of 
the coordinates on either side of the knot in 
question.  This however is not the only way of 
setting this gradient. If we differentiate the curve 
equation we get: 
 P' = 3a3 µ2 + 2a2 µ + a1 
So, now consider the two ends of a spline patch between Pi and Pi+1, where µ =0 or µ =1. The equations 
are: 
 Pi =  a0 
 P'i =  a1 
 Pi+1 = a3 + a2 + a1 + a0 
 P'i+1 = 3a3 + 2a2 + a1 
we can write this system of equations in matrix form: 

 
and since the a values are unknown and the P and P' known, we need to invert the matrix to solve for the 
parameters of the spline patch. 

 
Notice that we have vector quantities, so, this formulation represents eight equations for the 2D case, and 
twelve for the 3D case. However, the matrix is the same for each dimension. For any given set of knots, this 
cubic patch method gives a stable, practical solution. 
 
Bezier Curves 
One of the simplest ways of approximating a curve was 
made popular by Bezier in the context of car body 
design.  It was based on a mathematical formulation by 
Casteljau. A typical Bezier curve is shown in Diagram 
5.  Here four knots P0, P1, P2, P3 are shown. The 
gradient at each end of the Bezier curve is the same as 
the gradient of the line joining the first two knots (P0 = 
k(P1-P0)) for some constant k (k=the number of knots -
1) . This is an important property as it allows us to join 
Bezier patches together smoothly.  Computation of the 
Bezier Curve may be done in two ways. The first uses 
a recursive algorithm based on a method of Casteljau. The idea is illustrated by Diagram 6. For a given value 
of µ, say 1/2 we first construct the points on the lines [P0, P1] [P1, P2] and [P2, P3] for the chosen value of µ. 
These are labelled as the first set of constructed points, P1,0, P1,1 and P1,2. The new points are joined up and 
the same procedure is followed to construct the second set of points P2,0 and P2,1.  The process is repeated to 
find  the point P3,0. As µ varies from 0 - 1 the locus of P3,0 traces out the Bezier Curve. Using a functional 
pseudocode which allows us such liberties as scalar and vector multiplications and typed functions, this 
algorithm can be written very simply: 
 

1 0 0 0 a0 Pi
0 1 0 0 a1 = P'i
1 1 1 1 a2 Pi+1
0 1 2 3 a3 P'i+1

a 0 1 0 0 0 P i
a 1 = 0 1 0 0 P ' i
a 2 - 3 - 2 3 - 1 P i + 1
a 3 2 1 - 2 1 P ' i + 1

 

P = a3 µ3 + a2µ2 + a1µ + a0 

Diagram 4: Joining Spline patches 

P0

P3

P1

P2 
Gradient P1' = (P2 - P0)/2

P2' =  (P3 - P1)/2

 

Diagram 5 A typical four point Bezier Curve 
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function   Casteljau  (var P : knots; N,r : integer; µ: real) : point; 
begin 
 if (r = 1) 
 then Casteljau := (1- µ)*P[N] + µ *P[N+1] 
 else Casteljau := (1- µ)*Casteljau(P,N,r-1, µ)+ µ*Casteljau(P,N+1,r-1, µ) 
end 
 
and the curve can be drawn with: 
 
for j:=1 to L do 
begin 
 locus:=casteljau(Knot_array,0,N,j/L) 
 drawto(locus[x],locus[y]) 
end 
 
Note that here, and for all subsequent 
treatment of splines we will use a set of 
N+1 knots, labelled 0 to N. 
 
Blending 
Another way to view a Bezier curve is to 
think of it as a blend of its knots. This 
can be clearly seen when we consider applying the Casteljau algorithm to the degenerate case of two knots. 
This gives us the parametric line equation: 
 P =  (1- µ)P0 + µ P1 
in which we are linearly blending the two position vectors to produce a third. The parameter µ may be 
thought of as measuring the distance along the line. Like the curve constructed using the Casteljau 
algorithm, most approximations consist of a blend of the values of the knots.  For more than two points more 
complex blending is required.  This leads us to the iterative formulation of the Bezier Curve. 

 N  

P(µ) = Σ Pi W(N,i, µ) 
 i=0  

where W(N,i, µ) is called the Bernstein blending function 
 W(N,i, µ) =  NCi µ i(1- µ)N-i    
 NCi = N!/((N-i)! * i!) 
notice that we are using a parameter as before and for    
 µ =  0  P(0) = P0  
 µ =  1  P(1) = PN  
 0 < µ < 1  P(µ) = some blend of all Pi 
The iterative equation for the Bezier curve can be computed slightly more efficiently in terms of space than 
the recursive form, though in the 2D case this is not likely to 
be significant, since it is rare to use Bezier curves for more 
than a few points. The iterative solution, though less elegant, 
generalises to surface construction more easily, and so tends 
to be used in preference. 
 
Characteristics of Bezier Curves 
As previously mentioned, Bezier curves have their end 
gradient clamped to the slope of the end line segments, and, 
beyond the ends they blend the positions of all the points. 
Since Bezier Curves are a blend of all their control points 
there is little local control over a part of the curve. Figure 7 
shows how a large number of control points tends to be 
ineffectual with Bezier curves. Moving the intermediate 
points has little effect, and it is not possible to create a curve 
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Diagram 6: Casteljau's construction of the Bezier Curve 

 

Diagram 7  
Lack of local control in Bezier Curves 
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which wiggles with any degree of complexity. This problem can offset to some degree by piecing together a 
number of sections, as we did for the cubic patches.  
 
Relation between Bezier Curves and Cubic Patches 
 
We noted previously that the order of the Bezier curve is one less than the number of knots, so for four knots 
we have a cubic spline. This will be seen by expanding the iterative form of the Bezier curve: 

 3  

P(µ) = Σ Pi W(3,i, µ) 
 i=0  

for the case of four knots: 
 P(µ) = P0(1- µ)3 + 3 P1 µ (1- µ)2 + 3 P2 µ2 (1- µ) + P3 µ3 
which expands into the form 
 P(µ) = a3 µ3 + a2 µ2 + a1µ  + a0 
where a3 = P3 - 3P2 + 3P1 - P0 
 a2 = 3P2 - 6P1 + 3P0 
 a1 = 3P1 - 3P0 
 a0 = P0 
so, we can look at it as just a cubic spline patch between P0 and P3, with two shape control points, P1 and P2 
which are manipulated by the designer. 
 
The same method can be applied to the Casteljau construction by expanding the recursion backwards: 
 P3,0  =  µ P2,1 + (1-µ) P2,0 
  =  µ (µ P1,2 + (1-µ) P1,1) + (1-µ) (µ P1,1 + (1-µ) P1,0) 
  =  µ2 P1,2 + 2µ(1-µ) P1,1 + (1-µ)2 P1,0   
  =  µ2 (µ P0,3 + (1-µ) P0,2) + 2µ(1-µ) (µ P0,2 + (1-µ) P0,1) + (1-µ)2 (µ P0,1 + (1-µ) P0,0) 
 
if we drop the first subscript, which indicated the construction level of the Casteljau algorithm we get 
 
  =  µ2 (µ P3 + (1-µ) P2) + 2µ(1-µ) (µ P2 + (1-µ) P1) + (1-µ)2 (µ P1 + (1-µ) P0) 
  = P0(1- µ)3 + 3 P1 µ (1- µ)2 + 3 P2 µ2 (1- µ) + P3 µ3 
 
as we had for the blending formulation. 
 
So we can think of a four point Bezier curve as a cubic spline patch with shape control. The curve goes 
through points P0 and  P3 and by picking up points  P1 and  P with a mouse and moving them we can control 
the shape as desired. 
 


