
1

Graphics Lecture 1: Slide 1

Interactive Computer Graphics

Lecturers:

Duncan Gillies
dfg@doc.ic.ac.uk

Daniel Rueckert
dr@doc.ic.ac.uk

Webpage:
http:/www.doc.ic.ac.uk/~dfg/graphics/graphics.html

Graphics Lecture 1: Slide 2

Interactive Computer graphics books

 Interactive Computer Graphics – A top down
approach with OpenGL, E. Angel, 2nd edition,
Addison Wesley, 2000

 well suited for this course, many examples in OpenGL

 Computer Graphics: Principles and practice. J. D.
Foley et al, 2nd edition, Addison Wesley, 1996

 very comprehensive – “The Bible of Graphics”

Graphics Lecture 1: Slide 3

Coursework : Shading and Texture Mapping
Viewing transformations

NB We may change the exercise this year

Graphics Lecture 1: Slide 4

Key elements of a graphics system

1. Processor
2. Memory
3. Framebuffer
4. Output devices:

 monitor (CRT LCD)
 printer

5. Input Devices:
 keyboard, mouse, joystick, spaceball
 data glove, eye tracker

Graphics Lecture 1: Slide 5

Interactive Computer Graphics: APIs

 Graphics output devices are many and diverse, but
fortunately we don’t need to worry too much about
them since the operating system will generally take
care of many of the details.

 It provides us with an Application Programmer’s
Interface (API) which is a set of procedures for
handling menus windows and, of course, graphics.

Graphics Lecture 1: Slide 6

Interactive Computer Graphics: APIs

Home PC Workstation Server

Graphics library (API)

Application

Special purpose high
performance system

Windows/Apple Linux

2

Graphics Lecture 1: Slide 7

Interactive computer graphics: APIs

 Problem: If speed is critical (i.e. computer games) it
may be tempting to avoid using the API and access
the graphics hardware directly.

 ➨ Device dependence
 Existing APIs:

1. OpenGL
2. Direct3D
3. Java3D
4. VRML
5. Win32 API

Graphics Lecture 1: Slide 8

Interactive Computer Graphics: OpenGL

 OpenGL is hardware independent:
 PCs
 Workstations
 Supercomputers

 OpenGL is operating system independent:
 Windows NT, Windows 2000, Windows XP
 Linux and Unix

 OpenGL can perform rendering in
 software (i.e. processor)
 hardware (i.e. accelerated graphics card) if available

Graphics Lecture 1: Slide 9

Interactive Computer Graphics: OpenGL

 OpenGL can be used from
 C, C++
 Ada, Fortran
 Java

 OpenGL supports
 polygon rendering
 texture mapping and anti-aliasing

 OpenGL doesn’t support
 ray tracing
 volume rendering

Graphics Lecture 1: Slide 10

Raster Graphics

 The most common graphics device is the raster
display where the programmer plots points or pixels.

 A typical (API) command might be:

 SetPixel(x,y,colour)

 Where x and y are pixel coordinates.

Graphics Lecture 1: Slide 11

y

x

Display Device Window for Graphics

Normal meaning for SetPixel(x,y,green)

Graphics Lecture 1: Slide 12

Bits per pixel

 In some cases (laser printers) only one bit is used to
represent each pixel allowing it to be on or off (black
dot or white dot).

 In old systems 8 bits are provided per pixel allowing
256 different shades to be represented.

 Most common today are pixels with 24 or 32 bit
representation, allowing representation of millions of
colours.

3

Graphics Lecture 1: Slide 13

Pixel Addressing

 Unfortunately not all systems adopt the same pixel
addressing conventions.

 Some have the origin at the top left corner, some have
it at the bottom right hand corner.

Graphics Lecture 1: Slide 14

y

y
x

x

100

50

50

100

Different pixel addressing conventions

Graphics Lecture 1: Slide 15

Device Dependent Drawing Primitives

 Each operating system provides us with the
possibility of drawing graphics at the pixel level.

 For example in the Windows 32 API we have:
 MoveToEx(hdc xpix, ypix);
 LineTo(hdc, xpix1, ypix1);
 TextOut(hdc, xpix2, ypix2, message, length);

 Where hdc is an identifier for the window, and xpix
and ypix are pixel coordinates

Graphics Lecture 1: Slide 16

Why aim for better device independence

 1. In normal applications we want our pictures to
adjust their size if the window is changed.

 2. In graphics only applications we want our pictures
to be independent of resolution

 3. We want to be able to move graphics applications
between different systems (PC, Workstation,
Supercomputer etc.)

Graphics Lecture 1: Slide 17

World Coordinate System

 To achieve device independence we need to define a
world coordinate system.

 This will define our drawing area in units that are
suited to the application:

 meters
 light years
 microns
 etc

Graphics Lecture 1: Slide 18

Worlds and Windows

 It is common, but not universal to define the world
coordinates with the command:

 SetWindow(left,bottom,right,top)

 We can think of this as a window onto the world
matching a window on the screen

4

Graphics Lecture 1: Slide 19

SetWindow(Left,Bottom,Right,Top)

left right

bottom

top

World Coordinates

Drawing Area

Graphics Lecture 1: Slide 20

Device independent Graphics Primitives

 Having defined our world coordinate system we can
implement drawing primitives to use with it. For
example:

 DrawLine(x1,y1,x2,y2);
 DrawCircle(x1,y1,r);
 DrawPolygon(PointArray);
 DrawText(x1,y1,"A Message");

 Normally any part of a graphics object outside the
window is clipped.

Graphics Lecture 1: Slide 21

Problem Break

 What would you expect to be drawn in a graphics
window by the following instructions:

 SetWindow(30,10,70,50);
 DrawLine(50,30,80,50);
 DrawLine(80,50,50,5);

Graphics Lecture 1: Slide 22

SetWindow(30,10,70,50)
DrawLine (50,30,80,50)

30 70

10

50

World Coordinates

Visible parts of lines

Clipped parts of lines
Drawing Area

Solution

Graphics Lecture 1: Slide 23

Attributes

 In device independent graphics primitives we usually
avoid having a comprehensive set of parameters. For
example, a line will have:

 Style (solid or dotted)
 Thickness (points)
 Colour

 And text will have
 Font
 Size
 Colour

 These are called attributes

Graphics Lecture 1: Slide 24

Normalisation

 We need to connect our device independent graphics
primitives to the device dependent drawing
commands so that we can see something on the
screen.

 This is done by the process of normalisation.

5

Graphics Lecture 1: Slide 25

Normalisation

 In normalisation we need to translate our world
coordinates into a set of coordinates that will be
suitable for drawing using the API.

 First we must call the API to find out from the
operating system the pixel addresses of the corners of
the area we are using

Graphics Lecture 1: Slide 26

[Xd,Yd]

[Xw,Yw]

Wxmin Wxmax

Dxmin Dxmax

Window, World
Coordinates

Screen

Viewport

Pixel Coords

Normalisation

Graphics Lecture 1: Slide 27

Normalisation

 Having defined our world coordinates, and obtained
our device coordinates we relate the two by simple
ratios:

(Xw-WXmin) (Xd - DXMin)
(WXMax-WXMin)

=
(DXMax-DXMin)

rearranging gives us

Xd = (Xw-WXmin) *(DXMax-DXMin) + DXmin
(WXMax-WXMin)

Graphics Lecture 1: Slide 28

Normalisation

 A similar equation allows us to calculate the Y pixel
coordinate. The two can be combined into a simple
pair of linear equations:

 Xd := Xw * A + B;
 Yd := Yw * C + D;

Graphics Lecture 1: Slide 29

Viewports

 Viewports are smaller parts of the window where the
drawing is being displayed.

 If we select a viewport, the normal convention is that
all world coordinates are mapped to the viewport
rather than the whole drawing area.

 Viewports are defined in Normalised Device
Coordinates where the whole drawing window has
corners [0.0,0.0] and [1.0,1.0]

Graphics Lecture 1: Slide 30

(0.0,0.0)

1.0

1.0

Normalised Device Coordinates

SetViewport(0.5,0.5,0.85,0.9)

All device independent drawing
commands refer to this area

6

Graphics Lecture 1: Slide 31

Normalisation with Viewports

 Using viewports simply changes our normalisation
procedure. We now need to do the following:

 1. Call the operating system API to find out the pixel
addresses of the corners of the window

 2. Use the viewport setting to calculate the pixel addresses
of the area where the drawing is to appear.

 3. Compute the normalisation parameters A, B, C, D

Graphics Lecture 1: Slide 32

Input Devices

 There are many input devices for computer graphics:

 Mouse
 Joystick
 Button Box
 Digitising Tablet
 Light Pen
 etc.

 We will only consider the mouse here.

Graphics Lecture 1: Slide 33

Mouse Position and Visible Markers

 The mouse is simply a device which supplies the
computer with three bytes of information (minimum)
at a time, vis:

 Distance Moved in X direction (ticks)
 Distance Moved in Y direction (ticks)
 Button Status

 The provision of a visible marker on the screen is
done by software.

Graphics Lecture 1: Slide 34

Mouse Events

 A mouse event occurs when something changes, ie it
is moved or a button is pressed.

 The mouse interrupts the operating system to tell it
that an event has occurred and sends it the new data.

 The operating system normally updates the position
of the marker on the screen.

Graphics Lecture 1: Slide 35

Callback procedure

 The operating system informs the application program
of mouse events (and other events) which are relevant
to it.

 The program must receive this information in what is
called a callback procedure (or event loop).

Graphics Lecture 1: Slide 36

Simple Callback procedure

 while (executing) do
 { if (menu event) ProcessMenuRequest();
 if (mouse event)
 { GetMouseCoordinates();
 GetMouseButtons();
 PerformMouseProcess();
 }
 if (window resize event) RedrawGraphics();
 }

7

Graphics Lecture 1: Slide 37

Input Methods

 The mouse is commonly used to implement input
methods:

 Locator:
 Identifies a point on the screen using a visible marker

 Rubber Band:
 Adjusts the size and position of a graphical object

