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Interactive Computer Graphics

 Lecture 2:

 Three Dimensional objects, Projection and 
Transformations
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Planar Polyhedra

 These are three dimensional objects whose faces are 
all planar polygons often called facets.
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Representing Planar Polygons

 In order to represent planar polygons in the computer 
we will require a mixture of numerical and 
topological data.

 Numerical Data
 Actual 3D coordinates of vertices, etc.

 Topological Data
 Details of what is connected to what
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Projections of Wire Frame Models

 Wire frame models simply include points and lines.

 In order to draw a 3D wire frame model we must first 
convert the points to a 2D representation. Then we 
can use simple drawing primitives to draw them.

 The conversion from 3D into 2D is a form of 
projection.
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Non Linear Projections

 In general it is possible to project onto any surface:
 Sphere
 Cone
 etc

 or to use curved projectors, for example to produce 
lens effects.

 However we will only consider planar linear 
projections.



2

Graphics Lecture 2:  Slide 7

Normal Orthographic Projection

 This is the simplest form of projection, and effective 
in many cases.

 The viewpoint is at z = -∞
 The plane of projection is z=0

 so

 All projectors have direction d = [0,0,-1]
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Calculating an Orthographic Projection

 Projector Equation: 
 P = V + µ d

 Substitute d = [0,0,-1]
 Yields cartesian form

 Px = Vx + 0   Py = Vy + 0    Pz = Vz - µ

 The projection plane is z=0 so the projected 
coordinate is

 [Vx,Vy,0]

 ie we simply take the 3D x and y components of the 
vertex

Graphics Lecture 2:  Slide 10

Looking at a Face
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General View

Orthographic Projection of a Cube
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Perspective Projection

 Orthographic projection is fine in cases where we are 
not worried about depth (ie most objects are at the 
same distance from the viewer).

 However for close work (particularly computer 
games) it will not do.

 Instead we use perspective projection
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Calculating Perspective Projection

 Projector Equation: 
 P = µ V   (all projectors go through the origin)

 At the projected point Pz=f
 µp = Pz/Vz = f/Vz

 Px = µp Vx and Py = µp Vy 

 Thus
 Px = f Vx/Vz and Py = f Vy/Vz 

 The constant µp is sometimes called the fore-
shortenting factor
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Problem Break

 Given that the viewpoint is at the origin, and the 
viewing plane is at z=5: What point on the viewplane 
corresponds to the 3D vertex {10,10,10} in

 a. Perspective projection
 b. Orthographic projection

Perspective     x'= f x/z = 5 and y' = f y/z = 5

Orthographic  x' = 10 and y' =10
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The Need for Transformations

 Graphics scenes are defined in one co-ordinate system

 We want to be able to draw a graphics scene from any 
angle

 To draw a graphics scene we need the viewpoint to be 
the origin and the z axis to be the direction of view.

 Hence we need to be able to transform the coordinates 
of a graphics scene.
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Matrix transformations of points

 To transform points we use matrix multiplications.

 For example to make an object at the origin twice as 
big we could use:

[x',y',z']   = 2 0 0 x
0 2 0 y
0 0 2 z

yields

x' = 2x      y' = 2y      z' = 2z
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Translation by Matrix multiplication

 Many of our transformations will require translation 
of the points. 

 For example if we want to move all the points two 
units along the x axis we would require:

 x’ = x + 2
 y’ = y 
 z’ = z

 But how can we do this with a matrix?
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Honogenous Coordinates

 The answer is to use homogenous coordinates

[x', y', z', 1]  = [ x, y, z, 1] 1 0 0 0
0 1 0 0
0 0 1 0
2 0 0 1
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General Homogenous Coordinates

 In most cases the last ordinate will be 1, but in general 
we can consider it a scale factor. 

 Thus:

 [x, y, z, s]   is equivalent to   [x/s, y/s, z/s]
 Homogenous                             Cartesian
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Affine Transformations

 Affine transformations are those that preserve parallel 
lines.

 Most transformations we require are affine, the most 
important being:

 Scaling
 Translating
 Rotating

 Other more complex transforms will be built from 
these three.
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Translation

[ x, y, z, 1] 1 0 0 0 = [x+tx, y+ty, z+tz, 1 ]
0 1 0 0
0 0 1 0
tx ty tz 1
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Inverting a translation

 Since we know what transformation matrices do, we 
can write down their inversions directly

 For example:

1 0 0 0 has inversion 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
tx ty tz 1 -tx -ty -tz 1



5

Graphics Lecture 2:  Slide 25

Scaling

[x, y, z, 1] sx 0 0 0  = [sx*x, sy*y, sz*z, 1]
0 sy 0 0
0 0 sz 0
0 0 0 1
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Inverting scaling

sx 0 0 0 has inversion 1/sx 0 0 0
0 sy 0 0 0 1/sy 0 0
0 0 sz 0 0 0 1/sz 0
0 0 0 1 0 0 0 1
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Combining transformations

 Suppose we want to make an object at the origin 
twice as big and then move it to a point [5, 5, 20].

 The transformation is a scaling followed by a 
translation:

[x',y',z',1]  = [x, y, z, 1] 2 0 0 0 1 0 0 0
0 2 0 0 0 1 0 0
0 0 2 0 0 0 1 0
0 0 0 1 5 5 20 1

Graphics Lecture 2:  Slide 28

Combined transformations

 We multiply out the transformation matrices first, 
then transform the points

[x',y',z',1]  = [x, y, z, 1] 2 0 0 0
0 2 0 0
0 0 2 0
5 5 20 1
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Transformations are not commutative

 The order in which transformations are applied 
matters:

 In general

  TT * SS is not the same as SS * TT
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Rotation

 To define a rotation we need an axis.

 The simplest rotations are about the Cartesian axes

 eg

  RxRx - Rotate about the X axis
  RyRy - Rotate about the Y axis
 Rz - Rotate about the Z axis
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RRxx = 1 0 0 0 RRyy = Cos(θ) 0 -Sin(θ) 0
0 Cos(θ) Sin(θ) 0 0 1 0 0
0 -Sin(θ) Cos(θ) 0 Sin(θ) 0 Cos(θ) 0
0 0 0 1 0 0 0 1

RRz = Cos(θ) Sin(θ) 0 0
-Sin(θ) Cos(θ) 0 0

0 0 1 0
0 0 0 1

Rotation Matrices
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Rotate by θ
r

r
θ

φ

[X,Y]

[X', Y']Y

X

[X,Y] = [r Cosφ, r Sinφ]
[X',Y'] = [ r Cos(θ+φ) , r Sin(θ+φ) ]

= [ r Cosφ Cosθ - rSinφ Sinθ,  rSinφCosθ +  rCosφSinθ ]
= [ X Cosθ -Y Sinθ, YCosθ + XSinθ]
= [ X  Y ] Cosθ Sinθ

-Sinθ Cosθ

Deriving Rz
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Signs of Rotations

 Rotations have a direction. 

 The following rule applies to the matrix formulations 
given in the notes:

 Rotation is clockwise when viewed from the positive 
side of the axis
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Inverting Rotation

 Inverting a rotation by an angle θ is equivalent to 
rotating through an angle of -θ, now

 Cos(-θ) = Cos(θ)

 and

 Sin(-θ) = -Sin(θ)
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Inverting Rz

Cos(θ) Sin(θ) 0 0 has inversion Cos(θ) -Sin(θ) 0 0
-Sin(θ) Cos(θ) 0 0 Sin(θ) Cos(θ) 0 0

0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1


