
1

Graphics Lecture 2: Slide 1

Interactive Computer Graphics

 Lecture 2:

 Three Dimensional objects, Projection and
Transformations

Graphics Lecture 2: Slide 2

Planar Polyhedra

 These are three dimensional objects whose faces are
all planar polygons often called facets.

Graphics Lecture 2: Slide 3

Representing Planar Polygons

 In order to represent planar polygons in the computer
we will require a mixture of numerical and
topological data.

 Numerical Data
 Actual 3D coordinates of vertices, etc.

 Topological Data
 Details of what is connected to what

Graphics Lecture 2: Slide 4

Projections of Wire Frame Models

 Wire frame models simply include points and lines.

 In order to draw a 3D wire frame model we must first
convert the points to a 2D representation. Then we
can use simple drawing primitives to draw them.

 The conversion from 3D into 2D is a form of
projection.

Graphics Lecture 2: Slide 5

Projection of Vi

Plane of Projection 3D Object

Vi

Viewpoint

Projector

Planar Projection

Graphics Lecture 2: Slide 6

Non Linear Projections

 In general it is possible to project onto any surface:
 Sphere
 Cone
 etc

 or to use curved projectors, for example to produce
lens effects.

 However we will only consider planar linear
projections.

2

Graphics Lecture 2: Slide 7

Normal Orthographic Projection

 This is the simplest form of projection, and effective
in many cases.

 The viewpoint is at z = -∞
 The plane of projection is z=0

 so

 All projectors have direction d = [0,0,-1]

Graphics Lecture 2: Slide 8

z

x

y
V

Projector
V + µ d

(d=[0,0,-1)

Orthographic Projection onto z=0

Graphics Lecture 2: Slide 9

Calculating an Orthographic Projection

 Projector Equation:
 P = V + µ d

 Substitute d = [0,0,-1]
 Yields cartesian form

 Px = Vx + 0 Py = Vy + 0 Pz = Vz - µ

 The projection plane is z=0 so the projected
coordinate is

 [Vx,Vy,0]

 ie we simply take the 3D x and y components of the
vertex

Graphics Lecture 2: Slide 10

Looking at a Face

Looking at a vertex

General View

Orthographic Projection of a Cube

Graphics Lecture 2: Slide 11

Perspective Projection

 Orthographic projection is fine in cases where we are
not worried about depth (ie most objects are at the
same distance from the viewer).

 However for close work (particularly computer
games) it will not do.

 Instead we use perspective projection

Graphics Lecture 2: Slide 12

Y

Z

X

Plane of Projection
(z=f)

Viewpoint

Scene

Projector

f

Projected point

Canonical Form for Perspective Projection

3

Graphics Lecture 2: Slide 13

Calculating Perspective Projection

 Projector Equation:
 P = µ V (all projectors go through the origin)

 At the projected point Pz=f
 µp = Pz/Vz = f/Vz

 Px = µp Vx and Py = µp Vy

 Thus
 Px = f Vx/Vz and Py = f Vy/Vz

 The constant µp is sometimes called the fore-
shortenting factor

Graphics Lecture 2: Slide 14

7

Looking at a vertex

General ViewLooking at a Face

Perspective Projection of a Cube

Graphics Lecture 2: Slide 15

Problem Break

 Given that the viewpoint is at the origin, and the
viewing plane is at z=5: What point on the viewplane
corresponds to the 3D vertex {10,10,10} in

 a. Perspective projection
 b. Orthographic projection

Perspective x'= f x/z = 5 and y' = f y/z = 5

Orthographic x' = 10 and y' =10

Graphics Lecture 2: Slide 16

The Need for Transformations

 Graphics scenes are defined in one co-ordinate system

 We want to be able to draw a graphics scene from any
angle

 To draw a graphics scene we need the viewpoint to be
the origin and the z axis to be the direction of view.

 Hence we need to be able to transform the coordinates
of a graphics scene.

Graphics Lecture 2: Slide 17

Transformation of viewpoint

Y

X

Z

Y
X

Z

Coordinate System for definition Coordinate System for viewing

Viewpoint

Graphics Lecture 2: Slide 18

Matrix transformations of points

 To transform points we use matrix multiplications.

 For example to make an object at the origin twice as
big we could use:

[x',y',z'] = 2 0 0 x
0 2 0 y
0 0 2 z

yields

x' = 2x y' = 2y z' = 2z

4

Graphics Lecture 2: Slide 19

Translation by Matrix multiplication

 Many of our transformations will require translation
of the points.

 For example if we want to move all the points two
units along the x axis we would require:

 x’ = x + 2
 y’ = y
 z’ = z

 But how can we do this with a matrix?
Graphics Lecture 2: Slide 20

Honogenous Coordinates

 The answer is to use homogenous coordinates

[x', y', z', 1] = [x, y, z, 1] 1 0 0 0
0 1 0 0
0 0 1 0
2 0 0 1

Graphics Lecture 2: Slide 21

General Homogenous Coordinates

 In most cases the last ordinate will be 1, but in general
we can consider it a scale factor.

 Thus:

 [x, y, z, s] is equivalent to [x/s, y/s, z/s]
 Homogenous Cartesian

Graphics Lecture 2: Slide 22

Affine Transformations

 Affine transformations are those that preserve parallel
lines.

 Most transformations we require are affine, the most
important being:

 Scaling
 Translating
 Rotating

 Other more complex transforms will be built from
these three.

Graphics Lecture 2: Slide 23

Translation

[x, y, z, 1] 1 0 0 0 = [x+tx, y+ty, z+tz, 1]
0 1 0 0
0 0 1 0
tx ty tz 1

Graphics Lecture 2: Slide 24

Inverting a translation

 Since we know what transformation matrices do, we
can write down their inversions directly

 For example:

1 0 0 0 has inversion 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
tx ty tz 1 -tx -ty -tz 1

5

Graphics Lecture 2: Slide 25

Scaling

[x, y, z, 1] sx 0 0 0 = [sx*x, sy*y, sz*z, 1]
0 sy 0 0
0 0 sz 0
0 0 0 1

Graphics Lecture 2: Slide 26

Inverting scaling

sx 0 0 0 has inversion 1/sx 0 0 0
0 sy 0 0 0 1/sy 0 0
0 0 sz 0 0 0 1/sz 0
0 0 0 1 0 0 0 1

Graphics Lecture 2: Slide 27

Combining transformations

 Suppose we want to make an object at the origin
twice as big and then move it to a point [5, 5, 20].

 The transformation is a scaling followed by a
translation:

[x',y',z',1] = [x, y, z, 1] 2 0 0 0 1 0 0 0
0 2 0 0 0 1 0 0
0 0 2 0 0 0 1 0
0 0 0 1 5 5 20 1

Graphics Lecture 2: Slide 28

Combined transformations

 We multiply out the transformation matrices first,
then transform the points

[x',y',z',1] = [x, y, z, 1] 2 0 0 0
0 2 0 0
0 0 2 0
5 5 20 1

Graphics Lecture 2: Slide 29

Transformations are not commutative

 The order in which transformations are applied
matters:

 In general

 TT * SS is not the same as SS * TT

Graphics Lecture 2: Slide 30

Y

X

Y

X

Y

X

Graphics Scene
(Square at origin)

Translate
x:=x+1

Scale
x:=x*2

Scale
x:=x*2

Translate
x:=x+1

Y

X

Y

X

The order of transformations is significant

6

Graphics Lecture 2: Slide 31

Rotation

 To define a rotation we need an axis.

 The simplest rotations are about the Cartesian axes

 eg

 RxRx - Rotate about the X axis
 RyRy - Rotate about the Y axis
 Rz - Rotate about the Z axis

Graphics Lecture 2: Slide 32

RRxx = 1 0 0 0 RRyy = Cos(θ) 0 -Sin(θ) 0
0 Cos(θ) Sin(θ) 0 0 1 0 0
0 -Sin(θ) Cos(θ) 0 Sin(θ) 0 Cos(θ) 0
0 0 0 1 0 0 0 1

RRz = Cos(θ) Sin(θ) 0 0
-Sin(θ) Cos(θ) 0 0

0 0 1 0
0 0 0 1

Rotation Matrices

Graphics Lecture 2: Slide 33

Rotate by θ
r

r
θ

φ

[X,Y]

[X', Y']Y

X

[X,Y] = [r Cosφ, r Sinφ]
[X',Y'] = [r Cos(θ+φ) , r Sin(θ+φ)]

= [r Cosφ Cosθ - rSinφ Sinθ, rSinφCosθ + rCosφSinθ]
= [X Cosθ -Y Sinθ, YCosθ + XSinθ]
= [X Y] Cosθ Sinθ

-Sinθ Cosθ

Deriving Rz

Graphics Lecture 2: Slide 34

Signs of Rotations

 Rotations have a direction.

 The following rule applies to the matrix formulations
given in the notes:

 Rotation is clockwise when viewed from the positive
side of the axis

Graphics Lecture 2: Slide 35

Inverting Rotation

 Inverting a rotation by an angle θ is equivalent to
rotating through an angle of -θ, now

 Cos(-θ) = Cos(θ)

 and

 Sin(-θ) = -Sin(θ)

Graphics Lecture 2: Slide 36

Inverting Rz

Cos(θ) Sin(θ) 0 0 has inversion Cos(θ) -Sin(θ) 0 0
-Sin(θ) Cos(θ) 0 0 Sin(θ) Cos(θ) 0 0

0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

