Interactive Computer Graphics

Lecture 2:

Three Dimensional objects, Projection and Transformations

Planar Polyhedra

These are three dimensional objects whose faces are all planar polygons often called facets.

Projections of Wire Frame Models

Wire frame models simply include points and lines.

In order to draw a 3D wire frame model we must first convert the points to a 2 D representation. Then we can use simple drawing primitives to draw them.

The conversion from 3D into 2D is a form of projection.

Non Linear Projections

In general it is possible to project onto any surface:
Sphere
Cone
etc
or to use curved projectors, for example to produce lens effects.

However we will only consider planar linear projections.

Normal Orthographic Projection

This is the simplest form of projection, and effective in many cases.

The viewpoint is at $\mathrm{z}=-\infty$
The plane of projection is $\mathrm{z}=0$
so

All projectors have direction $\mathrm{d}=[0,0,-1]$

Graphics Lecture 2: Slide 7

Orthographic Projection onto $z=0$

Orthographic Projection of a Cube

Graphics Lecture 2: Slide 10

Perspective Projection

Orthographic projection is fine in cases where we are not worried about depth (ie most objects are at the same distance from the viewer).

However for close work (particularly computer games) it will not do.

Instead we use perspective projection

Canonical Form for Perspective Projection

Calculating Perspective Projection

Projector Equation:
$\mathbf{P}=\mu \mathbf{V}$ (all projectors go through the origin)
At the projected point $\mathrm{Pz}=\mathrm{f}$
$\mu_{\mathrm{p}}=\mathrm{Pz} / \mathrm{Vz}=\mathrm{f} / \mathrm{Vz}$
$P x=\mu_{p} V_{x}$ and $P y=\mu_{p} V y$
Thus
$P x=f V x / V z$ and $P y=f V y / V z$
The constant μ_{p} is sometimes called the foreshortenting factor

Graphics Lecture 2: Slide 13

Perspective Projection of a Cube

Graphics Lecture 2: Slide 14

The Need for Transformations

Graphics scenes are defined in one co-ordinate system

We want to be able to draw a graphics scene from any angle

To draw a graphics scene we need the viewpoint to be the origin and the z axis to be the direction of view.

Hence we need to be able to transform the coordinates of a graphics scene.

Matrix transformations of points

To transform points we use matrix multiplications.

For example to make an object at the origin twice as big we could use:

$$
\left[x^{\prime}, y^{\prime}, z^{\prime}\right]=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

yields

$$
x^{\prime}=2 x \quad y^{\prime}=2 y \quad z^{\prime}=2 z
$$

Graphics Lecture 2: Slide

Translation by Matrix multiplication

Many of our transformations will require translation of the points.
For example if we want to move all the points two units along the x axis we would require:

$$
\begin{aligned}
& x^{\prime}=x+2 \\
& y^{\prime}=y \\
& z^{\prime}=z
\end{aligned}
$$

But how can we do this with a matrix?

Graphics Lecture 2: Slide 19

Honogenous Coordinates

The answer is to use homogenous coordinates

$$
\left[\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}, 1\right]=[\mathrm{x}, \mathrm{y}, \mathrm{z}, 1]\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
2 & 0 & 0 & 1
\end{array}\right)
$$

General Homogenous Coordinates

In most cases the last ordinate will be 1, but in general we can consider it a scale factor.

Thus:
$[x, y, z, s]$ is equivalent to $[x / s, y / s, z / s]$
Homogenous
Cartesian

Affine Transformations

Affine transformations are those that preserve parallel lines.

Most transformations we require are affine, the most important being:

Scaling
Translating
Rotating

Other more complex transforms will be built from these three.

Graphics Lecture 2: Slide 22

Translation

$[x, y, z, 1]\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ t x & \text { ty } & \text { tz } & 1\end{array}\right)=[x+t x, y+t y, z+t z, 1]$

Inverting a translation

Since we know what transformation matrices do, we can write down their inversions directly

For example:
$\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \text { tx } & \text { ty } & \text { tz } & 1\end{array}\right)$ has inversion $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -t x & -t y & -t z & 1\end{array}\right)$

Inverting scaling

$\left(\begin{array}{cccc}\mathrm{sx} & 0 & 0 & 0 \\ 0 & \mathrm{sy} & 0 & 0 \\ 0 & 0 & \mathrm{sz} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ has inversion $\left(\begin{array}{cccc}1 / \text { sx } & 0 & 0 & 0 \\ 0 & 1 / \text { sy } & 0 & 0 \\ 0 & 0 & 1 / \text { sz } & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

Combining transformations

Suppose we want to make an object at the origin twice as big and then move it to a point $[5,5,20]$.

The transformation is a scaling followed by a translation:
$\left[x^{\prime}, y^{\prime}, z^{\prime}, 1\right]=[\mathrm{x}, \mathrm{y}, \mathrm{z}, 1]\left(\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 5 & 5 & 20 & 1\end{array}\right)$

Graphics Lecture 2: Slide 27

Combined transformations

We multiply out the transformation matrices first, then transform the points

$$
\left[x^{\prime}, y^{\prime}, z^{\prime}, 1\right]=[\mathrm{x}, \mathrm{y}, \mathrm{z}, 1]\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
5 & 5 & 20 & 1
\end{array}\right)
$$

Transformations are not commutative

The order in which transformations are applied matters:

In general
$\boldsymbol{T} * \boldsymbol{S}$ is not the same as $\boldsymbol{S} * \boldsymbol{T}$
The order of transformations is significant

Rotation

To define a rotation we need an axis.

The simplest rotations are about the Cartesian axes eg
$\boldsymbol{R} \boldsymbol{x}$ - Rotate about the X axis
$\boldsymbol{R y}$ - Rotate about the Y axis
$\boldsymbol{R z}$ - Rotate about the Z axis

Graphics Lecture 2: Slide 31

Inverting Rotation

Inverting a rotation by an angle θ is equivalent to rotating through an angle of $-\theta$, now
$\operatorname{Cos}(-\theta)=\operatorname{Cos}(\theta)$
and
$\operatorname{Sin}(-\theta)=-\operatorname{Sin}(\theta)$

Signs of Rotations

Rotations have a direction.

The following rule applies to the matrix formulations given in the notes:

Rotation is clockwise when viewed from the positive side of the axis

Rotation Matrices

$$
\begin{aligned}
& \boldsymbol{R} \mathbf{x}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \operatorname{Cos}(\theta) & \operatorname{Sin}(\theta) & 0 \\
0 & -\operatorname{Sin}(\theta) & \operatorname{Cos}(\theta) & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \boldsymbol{R y}=\left(\begin{array}{cccc}
\operatorname{Cos}(\theta) & 0 & -\operatorname{Sin}(\theta) & 0 \\
0 & 1 & 0 & 0 \\
\operatorname{Sin}(\theta) & 0 & \operatorname{Cos}(\theta) & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \boldsymbol{R} \mathbf{z}=\left(\begin{array}{cccc}
\operatorname{Cos}(\theta) & \operatorname{Sin}(\theta) & 0 & 0 \\
-\operatorname{Sin}(\theta) & \operatorname{Cos}(\theta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Graphics Lecture 2: Slide 32

Inverting Rz

$\left(\begin{array}{cccc}\operatorname{Cos}(\theta) & \operatorname{Sin}(\theta) & 0 & 0 \\ -\operatorname{Sin}(\theta) & \operatorname{Cos}(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ has inversion $\left(\begin{array}{cccc}\operatorname{Cos}(\theta) & -\operatorname{Sin}(\theta) & 0 & 0 \\ \operatorname{Sin}(\theta) & \operatorname{Cos}(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

