Interactive Computer Graphics

Lecture 2:

Three Dimensional objects, Projection and Transformations

Graphics Lecture 2: Slide 1

Planar Polyhedra

These are three dimensional objects whose faces are all *planar polygons* often called *facets*.

Representing Planar Polygons

In order to represent planar polygons in the computer we will require a mixture of numerical and topological data.

Numerical Data Actual 3D coordinates of vertices, etc.

Topological Data Details of what is connected to what

Graphics Lecture 2: Slide 3

Projections of Wire Frame Models

Wire frame models simply include points and lines.

In order to draw a 3D wire frame model we must first convert the points to a 2D representation. Then we can use simple drawing primitives to draw them.

The conversion from 3D into 2D is a form of projection.

Graphics Lecture 2: Slide 4

Normal Orthographic Projection

This is the simplest form of projection, and effective in many cases.

The viewpoint is at $z = -\infty$ The plane of projection is z=0

so

All projectors have direction d = [0,0,-1]

Graphics Lecture 2: Slide 7

Calculating an Orthographic Projection Projector Equation: $P = V + \mu d$ Substitute d = [0,0,-1]Yields cartesian form $Px = Vx + 0 Py = Vy + 0 Pz = Vz - \mu$ The projection plane is z=0 so the projected coordinate is [Vx,Vy,0]ie we simply take the 3D x and y components of the vertex

Calculating Perspective Projection

```
Projector Equation:

P = \mu V (all projectors go through the origin)

At the projected point Pz=f

\mu_P = Pz/Vz = f/Vz

Px = \mu_P v_x and Py = \mu_P v_y

Thus

Px = f Vx/Vz and Py = f Vy/Vz

The constant \mu_P is sometimes called the fore-

shortenting factor
```

Perspective Projection of a Cube

Matrix transformations of points

To transform points we use matrix multiplications.

For example to make an object at the origin twice as big we could use:

$$\mathbf{x}', \mathbf{y}', \mathbf{z}'] = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix}$$

yields

$$\mathbf{x'} = 2\mathbf{x} \qquad \mathbf{y'} = 2\mathbf{y} \qquad \mathbf{z'} = 2\mathbf{z}$$
 Graphics Lecture 2: Slide 18

Translation by Matrix multiplication

Many of our transformations will require translation of the points.

For example if we want to move all the points two units along the x axis we would require:

x' = x + 2y' = yz' = z

But how can we do this with a matrix?

Graphics Lecture 2: Slide 19

Honogenous Coordinates

The answer is to use homogenous coordinates

[x', y', z', 1] =	[x, y, z, 1]	$ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 2 \end{pmatrix} $	0 1 0 0	0 0 1 0	$\begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$	
Graphics Lecture 2: Slide 20						

General Homogenous Coordinates	Affine Transformations
In most cases the last ordinate will be 1, but in general we can consider it a scale factor.	Affine transformations are those that preserve parallel lines.
Thus: [x, y, z, s] is equivalent to [x/s, y/s, z/s] Homogenous Cartesian	Most transformations we require are affine, the most important being: Scaling Translating Rotating Other more complex transforms will be built from these three.
Graphics Lecture 2: Slide 21	Graphics Lecture 2: Slide 22

Translation				
$\begin{bmatrix} x, y, z, 1 \end{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ tx \end{bmatrix}$	0 1 0 ty	0 0 1 tz	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right) = $	[x+tx, y+ty, z+tz, 1]

Inverting a translation

Since we know what transformation matrices do, we can write down their inversions directly

For example:

Graphics Lecture 2: Slide 24

$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ tx & ty & tz & 1 \end{pmatrix} \ \ \ \ \ \ \ \ \ \ \ \ \$	$ \begin{pmatrix} 1 \\ 0 \\ 0 \\ -tx \end{pmatrix} $	0 1 0 -ty	0 0 1 -tz	
--	--	--------------------	--------------------	--

Graphics Lecture 2: Slide 23

Invest sx 0 0 0	0 sy 0 0	0 0 sz 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$	has inversion	$\begin{pmatrix} 1/sx \\ 0 \\ 0 \\ 0 \end{pmatrix}$	0 1/sy 0 0	0 0 1/sz 0	$\begin{pmatrix} 0\\ 0\\ 0\\ 1 \end{pmatrix}$
Graphics	s Lecture 2:	Slide 26						

Combining transformations									
Suppose we want to make an object at the origin twice as big and then move it to a point [5, 5, 20].									
The transformation is a s translation:	cali	ng f	followed	by a	l				
$[x',y',z',1] = [x, y, z, 1] \begin{pmatrix} 2\\ 0\\ 0\\ 0 \end{pmatrix}$	0 2 0 0	0 0 2 0		0 1 0 5	0 0 1 20	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$			
Graphics Lecture 2: Slide 27									

Combined transformations

We multiply out the transformation matrices first, then transform the points

$$[x',y',z',1] = [x, y, z, 1] \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 5 & 5 & 20 & 1 \end{pmatrix}$$

*Transformations are not commutative*The order in which transformations are applied matters: In general *T* * *S* is not the same as *S* * *T*

Rotation

To define a rotation we need an axis.

The simplest rotations are about the Cartesian axes

eg

Rx - Rotate about the X axis*Ry* - Rotate about the Y axis*Rz* - Rotate about the Z axis

Graphics Lecture 2: Slide 31

$\mathbf{R}\mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	0 Cos(θ)	$0 \\ Sin(\theta) \\ Cro(\theta)$	0	$\boldsymbol{R}\mathbf{y} = \begin{pmatrix} \cos(\theta) \\ 0 \\ \sin(\theta) \end{pmatrix}$	0 1	$-\sin(\theta)$	000
	$-Sin(\theta)$ 0	$Cos(\theta)$ 0	1	$\begin{bmatrix} Sin(\theta) \\ 0 \end{bmatrix}$	0	$Cos(\theta)$ 0	0
$\boldsymbol{R}z = \begin{pmatrix} \cos(\theta) \\ -\sin(\theta) \\ 0 \\ 0 \end{pmatrix}$	$Sin(\theta)$ $Cos(\theta)$ 0 0	0 0 1 0	$\begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$				

Inverting Rotation
Inverting a rotation by an angle θ is equivalent to rotating through an angle of $-\theta$, now
$\cos(-\theta) = \cos(\theta)$
and
$Sin(-\theta) = -Sin(\theta)$
Graphics Lecture 2: Slide 35

Inverting Rz						
$ \begin{pmatrix} Cos(\theta) & Sin(\theta) \\ -Sin(\theta) & Cos(\theta) \\ 0 & 0 \\ 0 & 0 \end{pmatrix} $	0 0 1 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ has inversion	$\begin{pmatrix} \cos(\theta) \\ \sin(\theta) \\ 0 \\ 0 \end{pmatrix}$	-Sin(θ) Cos(θ) 0 0	0 0 1 0	$\begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$
Graphics Lecture 2: Slide 36						