Interactive Computer Graphics

Lecture 4

Manipulation of Three Dimensional Objects

Graphics Lecture 4: Slide 1

The Concept of a Halfspace

Graphics Lecture 4: Slide 2

Convex Objects

We can use the halfspace property for a number of algorithms for manipulating graphics scenes.

We will consider first convex objects, and the first algorithm is to determine whether an object is convex or not.

Two Definitions of Convex

1. A line joining any two points on the boundary lies inside the object.
2. The object is the intersection of planar halfspaces.

Graphics Lecture 4: Slide 5

Algorithm for determining if an object is convex

> convex = true
for each face of the object
\{ find the plane equation of the face $f(x, y, z)=0$ choose one object point (xi,yi,zi) not on the face and find $\operatorname{sign}(\mathrm{f}(\mathrm{xi}, \mathrm{yi}, \mathrm{zi}))$ for all other points of the object
\{ if $(\operatorname{sign}(\mathrm{f}(\mathrm{xj}, \mathrm{yj}, \mathrm{zj})) \mathrm{not}=\operatorname{sign}(\mathrm{f}(\mathrm{xi}, \mathrm{yi}, \mathrm{zi})))$ then convex $=$ false
\}
sang

Testing for Convex

Graphics Lecture 4: Slide 7

Testing for Containment

A frequently encountered problem is to determine whether a point is inside an object or not.

We need this for clipping algorithms

Algorithm for Containment

let the test point be [$\mathrm{xt}, \mathrm{yt}, \mathrm{zt}$]
contained $=$ true
for each face of the object
\{ find the plane equation of the face $f(x, y, z)=0$ choose one object point (xi,yi,zi) not on the face and find $\operatorname{sign}(\mathrm{f}(\mathrm{xi}, \mathrm{yi}, \mathrm{zi}))$
if $(\operatorname{sign}(\mathrm{f}(\mathrm{xt}, \mathrm{yt}, \mathrm{zt})) \operatorname{not}=\operatorname{sign}(\mathrm{f}(\mathrm{xi}, \mathrm{yi}, \mathrm{zi})))$ then contained $=$ false
\}

Graphics Lecture 4: Slide 9

Vector formulation

The same test can be expressed in vector form.

This avoids the need to calculate the Cartesian equation of the plane, if, in our data base we store the normal \mathbf{n} vector to each face of our object.

Vector test for containment

Graphics Lecture 4: Slide 11

Normal vector to a face

The vector formulation does not require us to find the plane equation of a face, but it does require us to find a normal vector to the plane.
(same thing really since for plane $a x+b y+c z+d=0$ a normal vector is $[a, b, c]$)

Finding a normal vector
The normal vector can be found from the cross product of two vectors on the plane, say two edge vectors

Graphics Lecture 4: Slide 13

Checking the normal direction

Graphics Lecture 4: Slide 15

Solution 1
$\mathbf{P}-\mathbf{A}=\{1,1,1\}-\{-1,-1,1\}$
$=\{2,2,0\}$
n. $(\mathbf{P}-\mathbf{A})=6+10=16$
n. $(\mathbf{P}-\mathbf{A})$ is positive,
θ is acute
\mathbf{n} is an inner normal

Solution 3

Method 2:

The inner surface normal is $\mathbf{n}=\{3,5,7\}$
for the test point $\mathbf{P}=\{1,0,-1\}$ and vertex $\mathbf{A}=\{-1,-1,1\}$
$\mathbf{P}-\mathbf{A}=\{2,1,-2\}$
n. $(\mathbf{P}-\mathbf{A})=-3$

Thus the angle to the normal is >90

The point is on the outside

Graphics Lecture 4: Slide 19

Clipping

Containment is an important property used in clipping algorithms.

Clipping is used to remove unwanted parts of a graphics scene before drawing.

It can be applied in computer aided design, and graphics scene design.

Clipping algorithm

The algorithm checks the line against every face of the convex polyhedron.

It determines whether the end points of the line are on the inside or the outside of the face

This can be done by the halfspace or the dot product with the inner normal as before.
Given a line segment $\mathbf{P 1}$ to $\mathbf{P} 2$
determine the part of the line inside a convex object, ie $\mathbf{P} 3$ to $\mathbf{P 4}$

Case 1: Both P_{1} and P_{2} are on the outside
The line is completely clipped (no part of it is inside the polyhedron)

The algorithm terminates

Case 2: Both P_{1} and P_{2} are on the inside

There is no new information.

If there are more faces to test the algorithm continues to the next face.

Otherwise the line is completely inside the volume.

Case 3: P_{1} is outside and P_{2} is inside
Compute the intersection between the line and plane. for any vector \mathbf{p} lying on the plane $\mathbf{n} . \mathbf{p}=0$ let the intersection point be $\mu_{\mathrm{i}} \mathbf{P}_{\mathbf{2}}+\left(1-\mu_{\mathrm{i}}\right) \mathbf{P}_{\mathbf{1}}$ if A ia a vertex of the object a vector on the plane is
$\mu_{\mathrm{i}} \mathbf{P}_{\mathbf{2}}+\left(1-\mu_{\mathrm{i}}\right) \mathbf{P}_{\mathbf{1}}-\mathbf{A}$
thus $\mathbf{n} .\left(\mu_{\mathrm{i}} \mathbf{P}_{\mathbf{2}}+\left(1-\mu_{\mathrm{i}}\right) \mathbf{P}_{\mathbf{1}}-\mathbf{A}\right)=0$
we can solve this for μ_{i} and hence find the point of intersection
Replace $\mathbf{P}_{\mathbf{1}}$ with the intersection

Graphics Lecture 4: Slide 25

Case 3: P_{2} is outside and P_{1} is inside
This is equivalent to case 3 with P 1 and P 2 exchanged

Concave Objects

Containment and clipping can also be carried out with concave objects.

Most algorithms are based on the ray containment test.

The Ray test in two dimensions

Find all intersections between the ray and the polygon edges. If the number of intersections is odd the point is contained

Calculating intersections with rays

Rays have equivalent equations to lines, but go in only one direction. For test point T a ray is defined as

$$
\mathbf{R}=\mathbf{T}+\mu \mathbf{d} \quad \mu>0
$$

We choose a simple to compute direction eg

$$
\mathbf{d}=[1,0,0]
$$

Valid Intersections

Graphics Lecture 4: Slide 31

3D Ray test

There are two stages:

1. Compute the intersection of the ray with the plane of each face.
2. If the intersection is in the positive part of the ray $(\mu>0)$ check whether the intersection point is contained in the face.

Clipping to concave volumes

Find every intersection of the line to be clipped with the volume.

This divides the line into one or more segments.

Test a point on the first segment for containment

Adjacent segments will be alternately inside and out.

Extending the ray test to $3 D$

A ray is projected in any direction.
If the number of intersections with the object is odd, then the test point is inside

The plane of a face

Unfortunately the plane of a face does not in general line up with the Cartesian axes, so the second part is not a two dimensional problem.

However, containment is invariant under orthographic projection, so it can be simply reduced to two dimensions.

Splitting a volume into convex parts

Split the Object

