
1

Graphics Lecture 5: Slide 1

Computer Graphics

 Lecture 5:

 Towards Solid objects:
 Hidden Surfaces and Texture mapping

Graphics Lecture 5: Slide 2

Hidden Lines

 So far our treatment has concerned only points and
lines.

 This has utility in some applications, but for anything
of complexity wire frame representations become
confusing.

 We need to eliminate the hidden parts of the picture

Graphics Lecture 5: Slide 3

Types of Visibility Methods

• Back-face culling
• Ordering in object space

• Depth sort
• Painter’s algorithm

• Ordering in projection space
• Ordering in image space

• Z-buffer
• Ray casting

Graphics Lecture 5: Slide 4

Back Face Culling

 Polygons should be ordered in a consistent manner
(clockwise or counter clockwise)

 Polygons whose normal does not face the viewpoint,
are not rendered

Pi
Pi+2

Pi+1

Graphics Lecture 5: Slide 5

Back Face Culling

 Polygons should be ordered in a consistent manner
(clockwise or counter clockwise)

 Polygons whose normal does not face the viewpoint,
are not rendered

Pi

Pi+1
Graphics Lecture 5: Slide 6

Back Face Culling

 Polygons whose normal is pointing away from the
viewer can be culled. If α is the angle between the
normal and the viewer the polygon is front facing if

 -90 < α < 90 or cos α > 90

 Alternatively we can test for

 n · v > 0

2

Graphics Lecture 5: Slide 7

Back Face Culling

 Alternatively, think about back projection space
 The transformed polygon must have a normal with a

negative z component to be visible

 V

N

+1

-1

O

DOP

Graphics Lecture 5: Slide 8

Types of Visibility Methods

• Back-face culling
• Ordering in object space

• Depth sort
• Painter’s algorithm

• Ordering in projection space
• Ordering in image space

• Z-buffer
• Ray casting

Graphics Lecture 5: Slide 9

The Painter’s Algorithm

 Suppose we take each face of our wire frame and
draw it in two dimensions as a filled polygon.

 By filling it we hide anything behind it.

 So, if we draw the furthest parts first then the hidden
parts of the scene are automatically eliminated

Graphics Lecture 5: Slide 10

The Painter’s Algorithm

1st

2nd

3rd4th

5th

Polygons are rendered in depth order

Graphics Lecture 5: Slide 11

The Painter’s Algorithm

1st

2nd3rd

4th

5th

Changing the order changes the result

Graphics Lecture 5: Slide 12

Depth-sort

 Note that two polygons P and Q can be rendered in
any order, if they do not overlap in X-Y

 P can be rendered before Q if its P’s z range is
completely behind Q’s

3

Graphics Lecture 5: Slide 13

Depth-sort

 P can be rendered before Q if
• Z-extent of Q is wholly in front of P or
• Y-extent of Q does not overlap P or
• X-extent of Q does not overlap P or
• All points on P lie on the opposite side of Q than the centre

of projection (COP) or
• All points on Q lie on the same side of P as the COP or
• The projections of P and Q on the XY plane do not overlap

Graphics Lecture 5: Slide 14

Types of Visibility Methods

• Back-face culling
• Ordering in object space

• Depth sort
• Painter’s algorithm

• Ordering in projection space
• Ordering in image space

• Z-buffer
• Ray casting

Graphics Lecture 5: Slide 15

The Z-Buffer

 The painter’s algorithm requires the objects to be
sorted into depth order.

 A Z-Buffer algorithm is similar, but avoids sorting.

 Every time we set a pixel in our image we record in a
separate array (the z-buffer) the 3D z co-ordinate at
that pixel.

Graphics Lecture 5: Slide 16

The Z-Buffer again

 When we render a new polygon we check at each
pixel to see whether it is nearer or further than the
object currently drawn at that pixel.

 We only set the pixel if the polygon is closer.

 A further advantage of the z-buffer is that it can be
simply implemented in hardware

Graphics Lecture 5: Slide 17

The Z-Buffer

• Most common usage is a a full window sized array of
size m x n of 16, 24 or 32 bit “depth” values.

• Basic idea:
• Initialise buffer to Z_MAX
• For each pixel in each polygon

• If z < ZBUF[x,y] set CBUF[x,y] = col

• Now we have to write a z-value for each point
• directly from plane equation (re-calculate for each point)
• incremental across the scan-line (store z_start and dz)
• interpolate …

Graphics Lecture 5: Slide 18

Interpolating Depth

 Interpolate z along edges AND interpolate between
edges on each scan-line (bi-linear interpolation)

(X1,Y1,Z1)

(X2,Y2,Z2)

(XL,YL,ZL) (XR,YR,ZR)

lr

lr

xx
zzdz

−
−

=

4

Graphics Lecture 5: Slide 19

Texture

 The visual appearance of a graphics scene can be
greatly enhanced by the use of texture.

 Consider a brick building, using a polygon for every
brick require a huge effort in scene design.

 So why not use one polygon and draw a repeating
brick pattern onto it?

Graphics Lecture 5: Slide 20

Graphics Lecture 5: Slide 21

Texture Mapping

Graphics Lecture 5: Slide 22

Texture Mapping

Graphics Lecture 5: Slide 23

Texture Mapping

Graphics Lecture 5: Slide 24

Texture Definition

 Textures may be defined as:

 Bitmaps - Arrays containing the actual pixel values to be
mapped to the polygon. The data can be derived from
photographs for example.

 Procedures - Suitable for repeating patterns.

5

Graphics Lecture 5: Slide 25

Texture Definition Space
β

α 2α

1.5β

Texture applied to a polygon

Textures need not map exactly to polygons. They
can be smaller or larger than the polygon

Graphics Lecture 5: Slide 26

a

e

p

P1

P2

P3

P4

c

Diagram 7.2
Bi-linear texture

map

b

Polygon being
textured

α

β

Mapping texture to individual pixels

Graphics Lecture 5: Slide 27

Bi-linear Map - Solving for α and β

 p = αa + βe
 e = b + α(c - b)
 so
 p = αa + βb + αβ(c-b)

 Its Quadratic !
a

e

p

P1

P2

P3

P4

c
b

α

β

Graphics Lecture 5: Slide 28

Non Linearities in texture mapping

 The second order term means that straight lines in the
texture may become curved when the texture is
mapped.

 However, if the mapping is to a parallelogram:
 p = αa + βb + αβ(c-b)
 and
 b=c
 so p = αa + βb

Graphics Lecture 5: Slide 29

Photographs as Textures

 Photographs can be used to enhance reality with
virtually no design effort.

 For a flight simulator landing at an airport the distant
landscape can be presented as a photograph which
forms the back clipping plane

Graphics Lecture 5: Slide 30

Alias Effects

 One major problem with texture mapping is called
alias effects.

 These are caused by undersampling, and can cause
unreal visual artefacts.

6

Graphics Lecture 5: Slide 31

Appearance of the textured

polygon in the image

12 Pixels
6 Pixels
4 Pixels
3 Pixels

Polygon width

Texture

Samples

Diagram 7.3
Alias Effects in Texture Mapping

Graphics Lecture 5: Slide 32

Alias effects in static images

 Aliases appear in untextured static images as well.

 They have the characteristic of making straight line
boundaries look jagged.

 This is also due to undersampling.

Graphics Lecture 5: Slide 33

Desired Boundaries Pixels Set

Alias Effects at straight boundaries in raster
images.

Graphics Lecture 5: Slide 34

Anti-Aliasing

 The solution to aliasing problems is to apply a degree
of blurring to the boundary such that the effect is
reduced.

 The most successful technique is called

 Supersampling

Graphics Lecture 5: Slide 35

Supersampling

 The basic idea is to compute the picture at a higher
resolution to that of the display area.

 Then the supersamples are averaged to find the pixel
value.

 This has the effect of blurring boundaries, but leaving
coherent areas of colour unchanged

Graphics Lecture 5: Slide 36

Solid lines are
pixel boundaries

Dashed lines are
supersamples

Polygon Boundary

I1

I2

I1

(13/16)I2 + (3/16)I1

(3/16)I2 + (13/16)I1

Actual Pixel
Intensities I1

7

Graphics Lecture 5: Slide 37

Limitations of Supersampling

 Supersampling works well for scenes made up of
filled polygons.

 However, it does require a lot of extra computation.

 It does not work for line drawings.

Graphics Lecture 5: Slide 38

Actual Pixel
intensities

I/4 I/4

0 0 I/4

I/4 I/4

I/4

Graphics Lecture 5: Slide 39

Convolution filtering

 The more common (and much faster) way of dealing
with alias effects is to use a ‘filter’ to blur the image.

 This essentially takes an average over a small region
around each pixel

Graphics Lecture 5: Slide 40

Theoretical Line

Pixels set to
intensity I
(others set to 0)

For example consider the image of a line

Graphics Lecture 5: Slide 41

Consider one
pixel.

We replace the pixel by a local average,
one possibility would be 3*I/9

Treat each pixel of the image

Graphics Lecture 5: Slide 42

Weighted averages

 Taking a straight local average has undesirable
effects.

 Thus we normally use a weighted average.

1/36 * 1 4 1
4 16 4
1 4 1

8

Graphics Lecture 5: Slide 43

Convolution
mask located
at one pixel

Theoretical Line

Pixels set to
intensity I
(others set to 0)

4/9 1/9 1/9

1/9

1/9

1/36 1/36

1/36 1/36

Graphics Lecture 5: Slide 44

Convolution
mask located
at one pixel

Diagram 7.7:
Anti-aliasing by convolution filtering

Theoretical Line

Pixels set to
intensity I
(others set to 0)

(9/36)I

Final Pixel Intensities

(9/36)I

(21/36)I

(21/36)I

4/9 1/9 1/9

1/9

1/9

1/36 1/36

1/36 1/36

Graphics Lecture 5: Slide 45

Advantages of Convolution filtering

 It is very fast and can be done in hardware,

 It is of general application

 however

 It does degrade the image while enhancing its visual
appearance.

Graphics Lecture 5: Slide 46

Anti-Aliasing textures

 This is essentially the same technique.

 When we identify a point in the texture map we return
an average of texture map around the point.

 Scaling needs to be applied so that the less the
samples taken the bigger the local area where
averaging is done.

