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Computer Graphics

 Lecture 5:

 Towards Solid objects: 
 Hidden Surfaces and Texture mapping
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Hidden Lines

 So far our treatment has concerned only points and 
lines.

 This has utility in some applications, but for anything 
of complexity wire frame representations become 
confusing.

 We need to eliminate the hidden parts of the picture
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Types of Visibility Methods

• Back-face culling
• Ordering in object space

• Depth sort
• Painter’s algorithm

• Ordering in projection space
• Ordering in image space

• Z-buffer
• Ray casting
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Back Face Culling

 Polygons should be ordered in a consistent manner 
(clockwise or counter clockwise) 

 Polygons whose normal does not face the viewpoint, 
are not rendered
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Back Face Culling

 Polygons should be ordered in a consistent manner 
(clockwise or counter clockwise) 

 Polygons whose normal does not face the viewpoint, 
are not rendered
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Graphics Lecture 5:  Slide 6

Back Face Culling

 Polygons whose normal is pointing away from the 
viewer can be culled. If α is the angle between the 
normal and the viewer the polygon is front facing if

 -90 < α < 90 or cos α > 90

 Alternatively we can test for

 n · v > 0
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Back Face Culling

 Alternatively, think about back projection space
 The transformed polygon must have a normal with a 

negative z component to be visible
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Types of Visibility Methods

• Back-face culling
• Ordering in object space

• Depth sort
• Painter’s algorithm

• Ordering in projection space
• Ordering in image space

• Z-buffer
• Ray casting
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The Painter’s Algorithm

 Suppose we take each face of our wire frame and 
draw it in two dimensions as a filled polygon.

 By filling it we hide anything behind it.

 So, if we draw the furthest parts first then the hidden 
parts of the scene are automatically eliminated
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The Painter’s Algorithm

1st

2nd

3rd4th

5th

Polygons are rendered in depth order
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The Painter’s Algorithm

1st

2nd3rd

4th

5th

Changing the order changes the result
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Depth-sort

 Note that two polygons P and Q can be rendered in 
any order, if they do not overlap in X-Y

 P can be rendered before Q if its P’s z range is 
completely behind Q’s
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Depth-sort

 P can be rendered before  Q if
• Z-extent of Q is wholly in front of P  or
• Y-extent of Q does not overlap P or
• X-extent of Q does not overlap P or
• All points on P lie on the opposite side of Q than the centre 

of projection (COP) or
• All points on Q lie on the same side of P as the COP or
• The projections of P and Q on the XY plane do not overlap

Graphics Lecture 5:  Slide 14

Types of Visibility Methods

• Back-face culling
• Ordering in object space

• Depth sort
• Painter’s algorithm

• Ordering in projection space
• Ordering in image space

• Z-buffer
• Ray casting
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The Z-Buffer

 The painter’s algorithm requires the objects to be 
sorted into depth order.

 A Z-Buffer algorithm is similar, but avoids sorting.

 Every time we set a pixel in our image we record in a 
separate array (the z-buffer) the 3D z co-ordinate at 
that pixel.
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The Z-Buffer again

 When we render a new polygon we check at each 
pixel to see whether it is nearer or further than the 
object currently drawn at that pixel.

 We only set the pixel if the polygon is closer.

 A further advantage of the z-buffer is that it can be 
simply implemented in hardware
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The Z-Buffer

• Most common usage is a a full window sized array of 
size m x n of 16, 24 or 32 bit “depth” values.

• Basic idea:
• Initialise buffer to Z_MAX 
• For each pixel in each polygon

• If z < ZBUF[x,y] set CBUF[x,y] = col

• Now we have to write a z-value for each point
• directly from plane equation (re-calculate for each point)
• incremental across the scan-line (store z_start and dz)
• interpolate …
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Interpolating Depth

 Interpolate z along edges AND interpolate between 
edges on each scan-line (bi-linear interpolation)
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Texture

 The visual appearance of a graphics scene can be 
greatly enhanced by the use of texture.

 Consider a brick building, using a polygon for every 
brick require a huge effort in scene design.

 So why not use one polygon and draw a repeating 
brick pattern onto it?
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Texture Mapping
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Texture Mapping
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Texture Mapping
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Texture Definition

 Textures may be defined as:

 Bitmaps - Arrays containing the actual pixel values to be 
mapped to the polygon. The data can be derived from 
photographs for example.

 Procedures - Suitable for repeating patterns.
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Texture Definition Space 
β 

α 2α 

1.5β 

Texture applied to a polygon 

Textures need not map exactly to polygons. They 
can be smaller or larger than the polygon
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Bi-linear texture 
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Mapping texture to individual pixels
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Bi-linear Map - Solving for α and β

 p =  αa + βe
 e = b + α(c - b)
 so
 p = αa + βb + αβ(c-b)

 Its Quadratic !
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Non Linearities in texture mapping

 The second order term means that straight lines in the 
texture may become curved when the texture is 
mapped.

 However, if the mapping is to a parallelogram:
 p = αa + βb + αβ(c-b)
 and
 b=c
 so p = αa + βb
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Photographs as Textures

 Photographs can be used to enhance reality with 
virtually no design effort.

 For a flight simulator landing at an airport the distant 
landscape can be presented as a photograph which 
forms the back clipping plane
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Alias Effects

 One major problem with texture mapping is called 
alias effects.

 These are caused by undersampling, and can cause 
unreal visual artefacts.
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Appearance of the textured 

polygon in the image 

12 Pixels 
6 Pixels 
4 Pixels 
3 Pixels 

Polygon width 

Texture 

Samples 

Diagram 7.3 
Alias Effects in Texture Mapping 
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Alias effects in static images

 Aliases appear in untextured static images as well. 

 They have the characteristic of making straight line 
boundaries look jagged.

 This is also due to undersampling.
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Desired Boundaries Pixels Set 

Alias Effects at straight boundaries in raster 
images.
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Anti-Aliasing

 The solution to aliasing problems is to apply a degree 
of blurring to the boundary such that the effect is 
reduced.

 The most successful technique is called 

 Supersampling
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Supersampling

 The basic idea is to compute the picture at a higher 
resolution to that of the display area. 

 Then the supersamples are averaged to find the pixel 
value.

 This has the effect of blurring boundaries, but leaving 
coherent areas of colour unchanged
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Solid lines are 
pixel boundaries

Dashed  lines are 
supersamples 

Polygon Boundary
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Actual Pixel 
Intensities I1 
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Limitations of Supersampling

 Supersampling works well for scenes made up of 
filled polygons.

 However, it does require a lot of extra computation.

 It does not work for line drawings.
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Convolution filtering

 The more common (and much faster) way of dealing 
with alias effects is to use a ‘filter’ to blur the image.

 This essentially takes an average over a small region 
around each pixel
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Theoretical Line

Pixels set to
intensity I
(others set to 0)

For example consider the image of a line
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Consider one
pixel.

We replace the pixel by a local average,
one possibility would be 3*I/9

Treat each pixel of the image
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Weighted averages

 Taking a straight local average has undesirable 
effects.

 Thus we normally use a weighted average.

1/36 * 1 4 1
4 16 4
1 4 1
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Convolution 
mask located 
at one pixel  

Theoretical Line 

Pixels set to  
intensity I 
(others set to 0) 
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Convolution 
mask located 
at one pixel  

Diagram 7.7:  
Anti-aliasing by convolution filtering 
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Advantages of Convolution filtering

 It is very fast and can be done in hardware,

 It is of general application

 however

 It does degrade the image while enhancing its visual 
appearance.
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Anti-Aliasing textures

 This is essentially the same technique.

 When we identify a point in the texture map we return 
an average of texture map around the point.

 Scaling needs to be applied so that the less the 
samples taken the bigger the local area where 
averaging is done.


