Interactive Computer Graphics
Lecture 8: Colour

Ways of looking at colour

1. Physics
2. Human visual receptors
3. Subjective assessment

Graphics Lecture 10: Slide 2

Colours are energy distributions

Lasers are light sources that contain a single wavelength (or a very narrow band of wavelengths)

In practice light is made up of a mixture of many wavelengths with an energy distribution.

Graphics Lecture 10: Sides.

Human Colour Vision

Human colour vision is based on three 'cone' cell types which respond to light energy in different bands of wavelength.

The bands overlap in a curious manner.

Graphics Lecture 10: Slide 8

Human receptor response

Tri-Stimulus Colour theory

The receptor performance implies that colours do not have a unique energy distribution.
in particular

Colours which are a distribution over all wavelengths can be matched by mixing three.

R G B

Graphics Lecture 10: Slide 10

Colour Matching

Given any colour light source, regardless of the distribution of wavelengths that it contains, we can try to match it with a mixture of three light sources
$X=r R+g G+b B$
where R, G and B are pure light sources and r, g and b their intensities

For simplicity we can drop the R G B . Graphis Lecture 10: Slide 11

Subtractive matching

Not all colours can be matched with a given set of light sources (we shall see why later)

However, we can add light to the colour we are trying to match:
$X+r R=g G+b B$

With this technique all colours can be matched.

Graphics Lecture 10: Slide 12

The CIE diagram

The CIE diagram was devised as a standard normalised representation of colour.

As we noted, given three light sources we can mix them to match any given colour, providing we allow ourselves subtractive matching.

Suppose we normalise the ranges found to [0..1] to avoid the negative signs.

CIE stands for Commission Internationale de L'Eclairage and the standard dates back to 1931

Graphics Lecture 10: Slide 13

Normalised colours

Having normalised the range over which the matching is done we can now normalise the colours such that

$$
r+g+b=1
$$

thus
$\mathrm{x}=\mathrm{r} /(\mathrm{r}+\mathrm{g}+\mathrm{b})$
$y=g /(r+g+b)$
$\mathrm{z}=\mathrm{b} /(\mathrm{r}+\mathrm{g}+\mathrm{b})=1-\mathrm{x}-\mathrm{y}$
We can now represent all our colours in a 2D space.

Graphics Lecture 10: Slide 14

Normalised Colour Space

Convex Shape

Notice that the pure colours (coherent λ) are round the edge of the CIE diagram.

The shape must be convex, since any blend (interpolation) of pure colours should create a colour in the visible region

The line joining purple and red has no pure equivalent. The colours can only be created by blending.

Graphics Lecture 10: Slide 18

Intensities

White Point

When the three colour components are equal, the
Since the colours are all normalised there is no colour is white:

By changing the intensity perceptually different
$\mathrm{x}=0.33$ colours can be seen.
$y=0.33$
This point is clearly visible on the CIE diagram

Graphics Lecture 10: Slide 19

Saturation

Pure colours are called fully saturated.

These correspond to the colours around the edge of the horseshoe.

Saturation of a arbitrary point is the ratio of its distance to the white point over the distance of the white point to the edge.

Graphics Lecture 10: Side2 21

Complement Colour

The complement of a fully saturated colour is the point diametrically opposite through the white point.

A colour added to its complement gives us white.

Subtractive Primaries

When printing colour we use a subtractive representation.

Inks absorb wavelengths from the incident light, hence they subtract components to create the colour.

The subtractive primaries are
Magenta (purple)
Cyan (light Blue)
Yellow
Graphis Lecture vo: Sidie24

Additive vs Subtractive Colour representation

Surprisingly, the subtractive representation is capable of representing far more of the colour space than the additive.

We will see why this is so shortly.

Graphics Lecture 10: Slide 26

Colour Perception

Colour Perception

Perceptual tests suggest that humans can distinguish:
These figures must be treated with caution since there seems to be a much greater sensitivity to differentials in colour
128 different hues
For each hue around 30 different saturation.
60 and 100 different brightness levels.
Never the less, a representation with 24 bits (8 bits for red, 8 bits for green and 8 bits for blue does provide satisfactory results.
If we multiply these three numbers, we get approximately 350,000 different colours.

Graphics Lecture 10: Slide 27

Reproducable colours

Colour monitors are based on adding three the output of three different light emitting phosphors.

The nominal position of these on the CIE diagram is given by:

	x	y	z
Red	0.628	0.346	0.026
Green	0.268	0.588	0.144
Blue	0.150	0.07	0.780

Graphics Lecture 10: Slide 29

RGB to CIE

The monitor RGB representation is related to the CIE

HSI Colour representation

 colours by the equation:The RGB and CIE systems are practical representations, but do not relate to the way we perceive colours.

For interactive image manipulation it is preferable to use the HSI representation

Graphics Lecture 10: Slide 32

Perceptual Colour Space

HSI has three values per colour:

Hue - corresponds notionally to pure colour.

Saturation - The proportion of pure colour

Intensity - the brightness

Graphics Lecture 10: Slide 33

Perceptual Colour Space

Graphics Lecture 10: Slide 34

Conversion between RGB and HSI

$\mathrm{I}=(\mathrm{r}+\mathrm{g}+\mathrm{b}) / 3$
(Sometimes $\mathrm{I}=\max (\mathrm{r}, \mathrm{g}, \mathrm{b})$)
$\mathrm{S}=(\max (\mathrm{r}, \mathrm{g}, \mathrm{b})-\min (\mathrm{r}, \mathrm{g}, \mathrm{b})) / \max (\mathrm{r}, \mathrm{g}, \mathrm{b})$
Hue (which is an angle between 0 and 360°) is best described procedurally

Graphics Lecture 10: Slide 36

Calculating hue

if ($\mathrm{r}=\mathrm{g}=\mathrm{b}$) Hue is undefined, the colour is black, white or grey.
if $(\mathrm{r}>\mathrm{b})$ and $(\mathrm{g}>\mathrm{b})$ Hue $=120 *(\mathrm{~g}-\mathrm{b}) /((\mathrm{r}-\mathrm{b})+(\mathrm{g}-\mathrm{b}))$
if $(\mathrm{g}>\mathrm{r})$ and $(\mathrm{b}>\mathrm{r})$ Hue $=120+120 *(\mathrm{~b}-\mathrm{r}) /((\mathrm{g}-\mathrm{r})+(\mathrm{b}-\mathrm{r}))$
if $(\mathrm{r}>\mathrm{g})$ and $(\mathrm{b}>\mathrm{g})$ Hue $=240+120 *(\mathrm{r}-\mathrm{g}) /((\mathrm{r}-\mathrm{g})+(\mathrm{b}-\mathrm{g}))$

Graphics Lecture 10: Slide 37

Saturation in the RGB system

In the RGB system we can treat each point as a mixture of pure colour and white.

Note however that the so called pure colours are not coherent wavelengths as in the CIE diagram

Alpha Channels

Colour representations in computer systems sometimes use four components - rgbl.

The fourth is simply an attenuation of the intensity which:
allows greater flexibility in representing colours.
avoids truncation errors at low intensity
allows convenient masking certain parts of an image.

