Interactive Computer Graphics

Lecture 9: Ray tracing

Object-ordering (polygon) rendering

- Object-ordering rendering
- Each polygon or triangle is processed in turn and its visibility is determined using algorithms such as z -buffering
- After determining its visibility, the polygon or triangle is projected onto the viewing plane
- Polygon or triangle is shaded

$$
\mathrm{I}_{\text {reflected }}=\mathrm{k}_{\mathrm{a}}+\mathrm{I}_{\mathrm{i}} \mathrm{k}_{\mathrm{d}} \mathbf{n} . \mathbf{s} /|\mathbf{n} \| \mathbf{s}|+\mathrm{I}_{\mathrm{i}} \mathrm{~K}_{\mathrm{s}}(\mathbf{r} . \mathbf{v} /|\mathbf{r} \| \mathbf{v}|)^{\mathrm{t}}
$$

- Advantages:
- Fast rendering can be implemented by hardware

Problems with Object Oriented Rendering

Ray tracing - rays travel from the eye to the scene

- Question:
- Do light rays proceed from the eye to the light source or from the light source to the eye ?
- To answer the question, it is important to understand some of the fundamental laws of physics:

1. Light rays do travel in straight lines
2. Light rays do not interfere if they cross
3. Light rays travel from the light source to the eye but the physics are invariant under path reversal

Ray tracing

- Image order rendering techniques:
- ray tracing
- volume rendering
- Ray tracing allows to add more realism to the rendered scene by allowing effects such as
- shadows
- transparency
- reflections

Graphics Lecture 9: Slide 7

Ray tracing

- Ray tracing works as follows:
- For each pixel on the screen, a ray is defined by the line joining the viewpoint and the pixel of the viewing plane (perspective projection) or by a line orthogonal to the viewing place (orthographic or parallel projection)
- Each ray is cast through the viewing volume and checked for intersections with the objects inside the viewing volume

Graphics Lecture 9: Slide 8

Ray tracing: Secondary rays

- Secondary rays are rays originating at the intersection points

- Secondary rays are caused by

- rays reflected off the intersection point in the direction of reflection
- rays transmitted through transparent materials in the direction of refraction
- Primary rays are rays from the view point to the nearest intersection point
- We compute the illumination as before

$$
\mathrm{I}_{\text {reflected }}=\mathrm{k}_{\mathrm{a}}+\mathrm{I}_{\mathrm{i}} \mathrm{k}_{\mathrm{d}} \mathbf{n . s} /|\mathbf{n} \| \mathbf{s}|+\mathrm{I}_{\mathrm{i}} \mathrm{~K}_{\mathrm{s}}(\mathbf{r} . \mathbf{v} /|\mathbf{r} \| \mathbf{v}|)^{\mathrm{t}}
$$

- If the object has an intersection with the ray we calculate the distance between viewpoint and intersection
- If the ray has more than one intersection, the smallest distance identifies the visible surface.

Rays

- Rays are parametric lines
- Rays can be defined an
- origin \mathbf{p}_{0}
- direction d
- Equation of ray:
$\mathbf{p}(\mu)=\mathbf{p}_{0}+\mu \mathbf{d}$

Graphics Lecture 9: Slide 15

Ray tracing: Intersection calculations

- The coordinates of any point along each primary ray are given by:

$$
\mathbf{p}=\mathbf{p}_{0}+\mu \mathbf{d}
$$

$-\mathbf{p}_{0}$ is the current pixel on the viewing plane.

- \mathbf{d} is the direction vector and can be obtained from the position of the pixel on the viewing plane \mathbf{p}_{0} and the viewpoint $\mathbf{p}_{\mathbf{v}}$:

$$
\mathbf{d}=\frac{\mathbf{p}_{0}-\mathbf{p}_{\mathbf{v}}}{\left|\mathbf{p}_{0}-\mathbf{p}_{\mathbf{v}}\right|}
$$

- for a primary ray \mathbf{p}_{v} is usually the origin

Intersection calculations: Spheres

let the center be $\mathbf{p}_{\text {s }}$
let a point \mathbf{q} be on the sphere
For any point on the surface of the sphere

$$
\left|\mathbf{q}-\mathbf{p}_{\mathbf{s}}\right|^{2}-r^{2}=0
$$

where r is the radius of the sphere

Intersection calculations: Spheres

- To test whether a ray intersects a surface we can substitute for \mathbf{q} using the ray equation:

$$
\left|\mathbf{p}_{0}+\mu \mathbf{d}-\mathbf{p}_{\mathbf{s}}\right|^{2}-r^{2}=0
$$

- Setting $\Delta \mathbf{p}=\mathbf{p}_{0}-\mathbf{p}_{\mathbf{s}}$ and expanding the dot product produces the following quadratic equation:

$$
\mu^{2}+2 \mu(\mathbf{d} \cdot \Delta \mathbf{p})+|\Delta \mathbf{p}|^{2}-r^{2}=0
$$

Intersection calculations: Spheres

- The quadratic equation has the following solution:

$$
\mu=-\mathbf{d} \cdot \Delta \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \Delta \mathbf{p})^{2}-|\Delta \mathbf{p}|^{2}+r^{2}}
$$

- Solutions:
- if the quadratic equation has no solution, the ray does not intersect the sphere
- if the quadratic equation has two solutions $\left(\mu_{1}<\mu_{2}\right)$:
μ_{1} corresponds to the point at which the rays enters the sphere
μ_{2} corresponds to the point at which the rays leaves the sphere

Solution

- The direction vector is $\mathbf{d}=(0,0,10) / 10=(0,0,1)$
- Sphere A:
$\Delta \mathrm{p}=(0,0,8)$, so $\mu=8 \pm \operatorname{sqrt}(64-64+25)=8 \pm 5$
As the result, the ray enters A sphere at $(0,0,3)$ and exits the sphere at $(0,0,13))$.
- Sphere B:
$\Delta \mathrm{p}=(0,0,9)$, so $\mu=9 \pm \operatorname{sqrt}(81-81+9)=9 \pm 3$
As the result, the ray enters B sphere at $(0,0,6)$ and exits the sphere at $(0,0,12))$.
- Sphere C has no intersections with ray.

Graphics Lecture 9: Slide 22

Intersection calculations: Cylinders

- a position vector \mathbf{p}_{2} describing the second end point of the long axis of the cylinder
- a radius r
- The axis of the cylinder can be written as $\Delta \mathbf{p}=\mathbf{p}_{1}-\mathbf{p}_{2}$ and can be parameterized by $0 \leq \alpha \leq 1$
- To calculate the intersection of the cylinder with the ray:

$$
\mathbf{p}_{1}+\alpha \Delta \mathbf{p}+\mathbf{q}=\mathbf{p}_{0}+\mu \mathbf{d}
$$

$\alpha(\Delta \mathbf{p} \cdot \Delta \mathbf{p})=\mathbf{p}_{0} \cdot \Delta \mathbf{p}+\mu \mathbf{d} \cdot \Delta \mathbf{p}-\mathbf{p}_{1} \cdot \Delta \mathbf{p}$

Intersection calculations: Cylinders

- Solving for α yields:

$$
\alpha=\frac{\mathbf{p}_{0} \cdot \Delta \mathbf{p}+\mu \mathbf{d} \cdot \Delta \mathbf{p}-\mathbf{p}_{1} \cdot \Delta \mathbf{p}}{\Delta \mathbf{p} \cdot \Delta \mathbf{p}}
$$

- Substituting we obtain:

$$
\mathbf{q}=\mathbf{p}_{0}+\mu \mathbf{d}-\mathbf{p}_{1}-\left(\frac{\mathbf{p}_{0} \cdot \Delta \mathbf{p}+\mu \mathbf{d} \cdot \Delta \mathbf{p}-\mathbf{p}_{1} \cdot \Delta \mathbf{p}}{\Delta \mathbf{p} \cdot \Delta \mathbf{p}}\right) \Delta \mathbf{p}
$$

Intersection calculations: Cylinders

- Using the fact that $\mathbf{q} \cdot \mathbf{q}=r^{2}$ we can use the same approach as before to the quadratic equation for μ :

$$
r^{2}=\left(\mathbf{p}_{0}+\mu \mathbf{d}-\mathbf{p}_{1}-\left(\frac{\mathbf{p}_{0} \cdot \Delta \mathbf{p}+\mu \mathbf{d} \cdot \Delta \mathbf{p}-\mathbf{p}_{1} \cdot \Delta \mathbf{p}}{\Delta \mathbf{p} \cdot \Delta \mathbf{p}}\right) \Delta \mathbf{p}\right)^{2}
$$

- If the quadratic equation has no solution: no intersection
- If the quadratic equation has two solutions: intersection

Graphics Lecture 9: Slide 26

Intersection calculations: Plane

- Objects are often described by geometric primitives such as
- triangles
- planar quads
- planar polygons
- To test intersections of the ray with these primitives we must whether the ray will intersect the plane defined by the primitive
- If the value of α_{1} is between 0 and 1 the intersection is on the outside surface of the cylinder
- If the value of α_{2} is between 0 and 1 the intersection is on the inside surface of the cylinder

Graphics Lecture 9: Slide 27

Intersection calculations: Plane

- The intersection of a ray with a plane is given by

$$
\mathbf{p}_{1}+\mathbf{q}=\mathbf{p}_{0}+\mu \mathbf{d}
$$

where \mathbf{p}_{1} is a point in the plane. Subtracting $\mathbf{p}_{\mathbf{1}}$ and multiplying with the normal of the plane \mathbf{n} yields:

$$
\mathbf{q} \cdot \mathbf{n}=\mathbf{0}=\left(\mathbf{p}_{0}-\mathbf{p}_{1}\right) \cdot \mathbf{n}+\mu \mathbf{d} \cdot \mathbf{n}
$$

- Solving for μ yields:

$$
\mu=-\frac{\left(\mathbf{p}_{0}-\mathbf{p}_{1}\right) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}
$$

Graphics Lecture 9: Slide 29

Intersection calculations: Triangles

- To calculate intersections:
- test whether triangle is front facing
- test whether plane of triangle intersects ray
- test whether intersection point is inside triangle
- If the triangle is front facing:

$$
\mathbf{d} \cdot \mathbf{n}<0
$$

Intersection calculations: Triangles

- To test whether plane of triangle intersects ray
- calculate equation of the plane using

$$
\begin{aligned}
& \mathbf{p}_{2}-\mathbf{p}_{1}=\mathbf{a} \\
& \mathbf{p}_{3}-\mathbf{p}_{1}=\mathbf{b}
\end{aligned}
$$

- calculate intersections with plane as before

$$
\mathbf{n}=\mathbf{a} \times \mathbf{b}
$$

- To test whether intersection point is inside triangle: $\quad \mathbf{q}=\alpha \mathbf{a}+\beta \mathbf{b}$

Graphics Lecture 9: Slide 31

Intersection calculations: Triangles

- A point is inside the triangle if

$$
\begin{aligned}
& 0 \leq \alpha \leq 1 \\
& 0 \leq \beta \leq 1 \\
& \alpha+\beta \leq 1
\end{aligned}
$$

- Calculate α and β by taking the dot product with \mathbf{a} and \mathbf{b} :

$$
\begin{gathered}
\alpha=\frac{(\mathbf{b} \cdot \mathbf{b})(\mathbf{q} \cdot \mathbf{a})-(\mathbf{a} \cdot \mathbf{b})(\mathbf{q} \cdot \mathbf{b})}{(\mathbf{a} \cdot \mathbf{a})(\mathbf{b} \cdot \mathbf{b})-(\mathbf{a} \cdot \mathbf{b})^{2}} \\
\beta=\frac{\mathbf{q} \cdot \mathbf{b}-\alpha(\mathbf{a} \cdot \mathbf{b})}{\mathbf{b} \cdot \mathbf{b}}
\end{gathered}
$$

Graphics Lecture 9: Slide 32

Accelerating ray tracing

- Intersection calculation:
- if the ray does not intersect the bounding volume, the ray will not intersect any objects within the bounding volume
- if the ray does intersect the bounding volume, each of the objects within the bounding volume must be checked for intersections with the ray
- Bounding volumes:
- bounding spheres
- bounding boxes

[^0]
Accelerating ray tracing: Bounding volumes

Bounding box

Accelerating ray tracing: Space subdivision

A	A, B				
A	A, C				
			D, E	E, F	F
			E	E, F	F

Accelerating ray tracing: Space subdivision

Accelerating ray tracing: Adaptive space subdivision

Accelerating ray tracing: Space subdivision

Accelerating ray tracing: Space subdivision

More information and downloads

- Persistence of Vision Raytracer
- http://www.povray.org/
- Some examples are shown on the following slides

[^0]: Graphics Lecture 9: Slide 34

