Interactive Computer Graphics

- Lecture 13:
- Constructive Solid Geometry (CSG)

Constructive Solid Geometry (CSG)

- Constructive solid models can consists of primitive shapes such as
- sphere
- cylinder
- cone
\} Implicit representation
- pyramid
- cube
- box
- Constructive solid models cannot consist of half-spaces such as
- points
- lines
- planes

Constructive Solid Geometry (CSG)

- Real and virtual objects can be represented by - solid models such as spheres, cylinders and cones - surface models such as triangles, quads and polygons
- Surface models can be rendered either by
- object-order rendering
- image-order rendering (i.e. ray tracing)
- Solid models can only be rendered by ray tracing
- Solid models are commonly used to describe manmade shapes
- computer aided design
- computer assisted manufacturing

Constructive Solid Geometry (CSG)

- CSG combines solid objects by using three (four) different boolean operations
- intersection (\cap)
- union (+)
- minus (-)
- (complement)
- In theory the minus operation can be replaced by a complement and intersection operation
- In practice the minus operation is often more intuitive as it corresponds to removing a solid volume

CSG trees

- CSG operations are not unique:

CSG: Interior, Exterior and Closure

- a point \mathbf{p} is an interior point of a solid \mathbf{s} if there exists a radius r such that the open ball with center \mathbf{p} and radius r is contained in the solid \mathbf{s}. The set of all interior points of solid \mathbf{s} is the interior of \mathbf{s}, written as $\operatorname{int}(\mathbf{s})$. Based on this definition, the interior of an open ball is the open ball itself.
- a point \mathbf{q} is an exterior point of a solid \mathbf{s} if there exists a radius r such that the open ball with center \mathbf{q} and radius r is not contained in \mathbf{s}. The set of all exterior points of solid \mathbf{s} is the exterior of solid \mathbf{s}, written as $\operatorname{ext}(\mathrm{s})$.

CSG trees: Problems

Cube A
\cap
Cube B
$=\quad$ Plane

CSG: Interior, Exterior and Closure

- all points that are not in the interior nor in the exterior of a solid \mathbf{s} are the boundary of solid \mathbf{s}. The boundary of \mathbf{s} is written as $\mathbf{b}(\mathbf{s})$. Therefore, the union of interior, exterior and boundary of a solid is the whole space.
- the closure of a solid s is defined to be the union of \mathbf{s} 's interior and boundary, written as closure(s). Or, equivalently, the closure of solid \mathbf{s} is all points that are not in the exterior of \mathbf{s}.

CSG: Interior, Exterior and Closure

- Definition of an open ball:

$$
\left(x_{0}-x\right)^{2}+\left(y_{0}-y\right)^{2}+\left(z_{0}-z\right)^{2}<r^{2}
$$

C

CSG: Interior, Exterior and Closure

- The exterior of a sphere is

$$
x^{2}+y^{2}+z^{2}>r^{2}
$$

- A solid is a three-dimensional object
- The interior of a solid is a three-dimensional object
- The boundary of a solid is a two-dimensional surface

CSG: Interior, Exterior and Closure

- Consider a sphere:

$$
x^{2}+y^{2}+z^{2}=r^{2}
$$

- The interior of a sphere is

$$
x^{2}+y^{2}+z^{2}<r^{2}
$$

- The closure of a sphere is

$$
x^{2}+y^{2}+z^{2} \leq r^{2}
$$

CSG: Interior, Exterior and Closure

- To eliminate these lower dimensional branches, the three set operations are regularized:
- Compute the result as usual and lower dimensional components may be generated.
- Compute the interior of the result. This step would remove all lower dimensional components. The result is a solid without its boundary.
- Compute the closure of the result obtained in the above step. This would add the boundary back.

CSG: Interior, Exterior and Closure

- Let,$+ \cap$ and - be the regularized set union, intersection and difference operators. Let A and B be two solids. Then, $\mathrm{A}+\mathrm{B}, \mathrm{A} \cap \mathrm{B}$ and $\mathrm{A}-\mathrm{B}$ can be defined mathematically based on the above description:
- $\mathrm{A}+\mathrm{B}=\operatorname{closure}$ (int(the set union of A and B)
- $A \cap B=$ closure(int(the set intersection of A and B)
- $\mathrm{A}-\mathrm{B}=\mathbf{c l o s u r e}(\mathbf{i n t}($ the set difference of A and B)

Ray tracing CSG trees

- Each list of line segments (or spans) may be characterized by the alpha values representing the intersection points of the corresponding ray equation:

$$
\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)
$$

- Each list of line segments will either contain
- an odd number of intersection points (the viewpoint is inside the solid object)
- an even number of intersection points (the viewpoint is outside the solid object)
- an empty list of intersection points

Ray tracing CSG trees

- CSG trees must be rendered by ray tracing
- CSG trees must be traversed in a depth first manner - traversal starts at the leaf nodes
- traversal of each node yields a list of line segments of the ray that pass through the solid object
- list of lines segments is passed to parent node and processed accordingly

Ray tracing CSG trees: Union
\qquad

Ray tracing CSG trees: Minus

\qquad
-
\qquad
=

Ray tracing CSG trees

Extending CSG trees

- CSG trees can be pruned during ray tracing:
- if the left or right subtree of an intersection operation returns an empty list, then the other subtreed need not be processed.
- if the left subtree of a minus operation returns an empty list, then the right subtree need not be processed.
- CSG trees can use bounding boxes/spheres to speed up rendering:
- each primitive that does not belong the currently processed bounding volume may be represented by an empty intersection list
- Adding transformations as primitive operations:
- scaling
- rotation

Calculating properties of CSG trees

- Ray tracing can be used to approximate the physical properties of objects including
- volume
- mass
by firing a set of parallel rays from a firing plane

Calculating properties of CSG trees

- Volume:

$$
V \approx \sum V_{i j}
$$

where

$$
V_{i j}=A_{i j} \Delta Z_{i j}
$$

- $A_{i j}$ is the area in the firing plane
- $\Delta Z_{i j}$ is the distance between two intersection points along the firing ray
- Mass:

$$
M \approx \sum M_{i j}
$$

$$
M_{i j}=A_{i j} \Delta Z_{i j} \rho_{i j}
$$

Summary

- CSG representations are compact and efficient:
- unevaluated models can be modified easily and efficiently
- unevaluated models must be processed (by evaluating the CSG tree before further operations can be carried out
- CSG representations are valid, i.e. they create solid models
- CSG representations are accurate, i.e. they can represent curved surfaces
- CSG representations are not unique
- CSG representations are slow to render, i.e. they must be rendered using ray tracing
- CSG representations can be converted to polygonal representations and then be rendered

