Interactive Computer Graphics

Lecture 11: Radiosity - Principles

Graphics Lecture 11: Slide 1

The reflectance equation

Earlier in the course we introduced the reflectance equation for modelling light reflected from surfaces:
$\mathrm{I}_{\text {reflected }}=\mathrm{k}_{\mathrm{a}}+\mathrm{I}_{\mathrm{i}} \mathrm{k}_{\mathrm{d}} \boldsymbol{n} \cdot \boldsymbol{s}+\mathrm{I}_{\mathrm{i}} \mathrm{K}_{\mathrm{s}}(\boldsymbol{r} \cdot \boldsymbol{v})^{\mathrm{t}}$
Where I is the incident light and the constants represent: k_{a} the amount of ambient light
k_{d} the amount of diffuse reflection
k_{s} the amount of specular reflection

Ambient light

A better approximation to the reflectance equation is to make the ambient light term a function of the incident light as well:
$\mathrm{I}_{\text {reflected }}=\mathrm{I}_{\mathrm{i}} \mathrm{k}_{\mathrm{a}}+\mathrm{I}_{\mathrm{i}} \mathrm{k}_{\mathrm{d}} \boldsymbol{n} \boldsymbol{\boldsymbol { s }} \boldsymbol{\boldsymbol { s }}+\mathrm{I}_{\mathrm{i}} \mathrm{K}_{\mathrm{s}}(\boldsymbol{r} \boldsymbol{v} \boldsymbol{v})^{\mathrm{t}}$
or more simply to write (for a given viewpoint)
$I_{\text {reflected }}=R I_{i}$
where R is the reflectance function.
Graphics Lecture 11: Slide 4

Radiosity

Radiosity is defined as the energy per unit area leaving a surface. It is the sum of the emitted energy (if any) and the reflected energy.

For a small area of the surface dA (where the emitted energy can be regarded as constant) we have:

$$
\mathrm{BdA}=\mathrm{EdA}+\mathrm{RI}
$$

Notice that we now treat light sources as distributed Graphics Lecture 11: Slide 5

Collecting energy

The incident energy can now be written (for patch i) as:

$$
\mathrm{I}_{\mathrm{i}}=\int_{\mathrm{B}_{\mathrm{j}}} \mathrm{~F}_{\mathrm{ij}} \mathrm{dA}_{\mathrm{j}}
$$

where the integral is taken over all patches except i
F_{ij} is a constant that links patch i and patch j called the form factor

Discrete formulation

For computer graphics we cannot expect to compute a continuous solution, so we divide all polygons up into patches and replace the integral with a sum:

$$
\mathrm{B}_{\mathrm{i}}=\mathrm{E}_{\mathrm{i}}+\mathrm{R}_{\mathrm{i}} \sum \mathrm{~B}_{\mathrm{j}} \mathrm{~F}_{\mathrm{ij}}
$$

Where the sum is taken over all patches except i (or alternatively we can set $\mathrm{F}_{\mathrm{ii}}=0$)

In matrix form

If we can solve this for all Bi then we will be able to render each patch with a correct light model.

However, this is not so easy to do since
the form factors are not known.
the reflectance equation is insoluable
the matrix is big - circa 10000 by 10000
Graphics Lecture 11: Slide 8

Back to the reflectance function

$\mathrm{I}_{\text {reflected }}=\mathrm{I}_{\mathrm{i}} \mathrm{k}_{\mathrm{a}}+\mathrm{I}_{\mathrm{i}} \mathrm{k}_{\mathrm{d}} \boldsymbol{n} \cdot \boldsymbol{s}+\mathrm{I}_{\mathrm{i}} \mathrm{K}_{\mathrm{s}}(\boldsymbol{r} \cdot \boldsymbol{v})^{\mathrm{t}}$

Note that the specular term depends on the vector to the light source v.

But now, every patch is a light source!

Specular reflections

Moreover our light sources are no longer points, so we need to collect the incident light in a specular cone to determine the specular reflection.

This is computationally infeasible.

We will return to specularities later, but for the moment we will consider only diffuse radiosity.

Patching Problems

We need to divide our graphics scene into patches for computing the radiosity.

For small polygons we can perhaps use the polygon map, but for large polygons we need to subdivide them.

Since the emitted light will not be constant across a large polygon we will see the subdivisions

Large Polygons

Each Patch will have a different but constant illumination.

Thus we will see the patches unless either:

Patches project to (sub) pixel size
or
We smooth the results (eg by interpolation)

Graphics Lecture 11: Slide 13

Form Factors

The form factors couple every pair of patches, determining the proportion of radiated energy from one that strikes the other.

$$
\mathrm{Fij}=\frac{1}{\operatorname{Area}(\mathrm{Ai})} \int_{\mathrm{A}_{\mathrm{i}}} \int_{\mathrm{A}_{\mathrm{j}}} \frac{\operatorname{Cos} \phi_{\mathrm{i}} \operatorname{Cos} \phi_{\mathrm{i}}}{\pi r^{2}} \mathrm{dA}_{\mathrm{j}} \mathrm{dA}_{\mathrm{i}}
$$

Graphics Lecture 11: Slide 14

Simplifying form factors

With this assumption the outer integral evaluates to 1 , and we assume that the same value persists over the patch.

Hence we can write the integral as:

$$
\mathrm{F}_{\mathrm{ij}}=\int_{\mathrm{A}_{\mathrm{j}}} \frac{\operatorname{Cos} \phi_{\mathrm{i}} \operatorname{Cos} \phi_{\mathrm{i}}}{\pi \mathrm{r}^{2}} d \mathrm{~A}_{\mathrm{j}}
$$

The Hemicube method

Using a bounding hemisphere it can be shown that all patches that project onto the same area of the hemisphere have the same form factor

The Hemicube method

So, all patches that project onto the same area of a surrounding hemicube have the same form factor.

Computing intersections with planes is less computationally demanding

Graphics Lecture 11: Slide 19

Delta form factors

The hemicube is divided into small "pixel" areas and form factors are computed for each.

Graphics Lecture 11: Slide 20

Problem Break

Given that the hemicube is defined at the origin, with the z axis vertical what is the delta form factor for the following two hemi cube pixels in the top face, $\mathrm{z}=1$:
$\{x \min , y m i n, x m a x, y m a x\}=\{-0.05,-0.05,0.05,0.05\}$ and
$\{x \min , y m i n, x m a x, y m a x\}=\{-0.45,-0.05,-0.55,0.05\}$

Projection of patches onto the hemicube

We now need to know which patch is visible from each hemicube pixel.

This could be done by ray tracing, or projection.

Further patches are rejected, solving the occlusion problem.

Graphics Lecture 11: Slide 24

Sum the pixels per patch

Notice that all we need to determine is which patches are visible at each hemicube pixel.

Once this is found we calculate the form factor for each patch by summing the delta form factors of the hemicube pixels to which it projects.

Graphics Lecture 11: Slide 25

In summary

1. Divide the graphics world into discrete patches
2. Compute form factors by the hemicube method
3. Solve the matrix equation for the radiosity of each patch.
4. Average the radiosity values at the corners of each patch

5a. Compute a texture map of each point on the patch

5 b. Project to the viewing window and render with interpolation shading.

Graphics Lecture 11: Slide 27

Inside the hemicube

Images from Alan Watt: The Computer Image

Radiosity Images

Much of the early work on radiosity was carried out at Cornell University, and images and tutorial material can be found on their web site.
http://www.graphics.cornell.edu/online/research/

[^0]

[^0]: Graphics Lecture 11: Slide 28

