

Warping

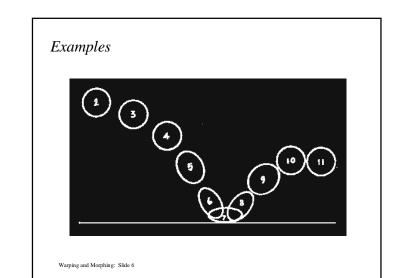
- The term warping refers to the geometric transformation of graphical objects (images, surfaces or volumes) from one coordinate system to another coordinate system.
- Warping does not affect the attributes of the underlying graphical objects.
- Attributes may be
 - color (RGB, HSV)
 - texture maps and coordinates
 - normals, etc.

Warping and Morphing: Slide 4

Morphing

Warping and Morphing: Slide 5

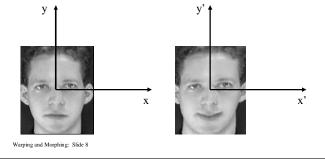
- The term morphing stands for metamorphosing and refers to an animation technique in which one graphical object is gradually turned into another.
- Morphing can affect both the shape and attributes of the graphical objects.

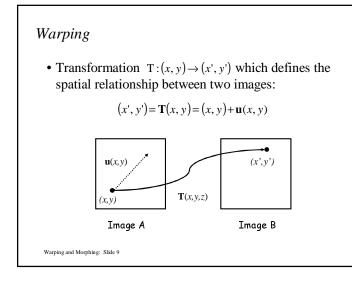


<section-header><section-header><section-header><image><image>

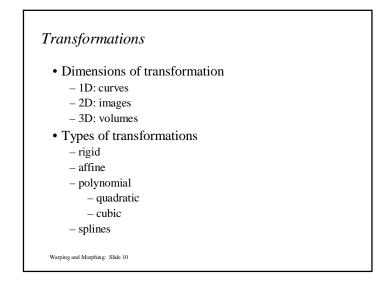
Mapping

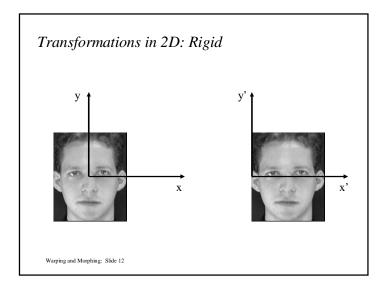
• Define transformation which maps every point (x, y) in the source coordinates to the corresponding point (x', y') in the destination coordinates (or vice-versa, if invertible)

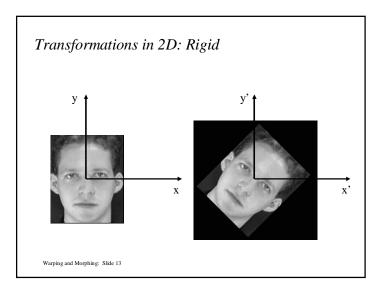




Transformations in 2D: Rigid
• Rigid transformation (3 degrees of freedom)
$\begin{pmatrix} x'\\y'\\1 \end{pmatrix} = \begin{pmatrix} \cos\alpha & -\sin\alpha & t_x\\\sin\alpha & \cos\alpha & t_y\\0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x\\y\\1 \end{pmatrix} = \mathbf{R} \cdot \begin{pmatrix} x\\y\\1 \end{pmatrix} + \begin{pmatrix} t_x\\t_y\\0 \end{pmatrix}$
 t_x and t_y describe the two translations in x and y α describes the rotation around the center of the image
Warping and Morphing: Slide 11



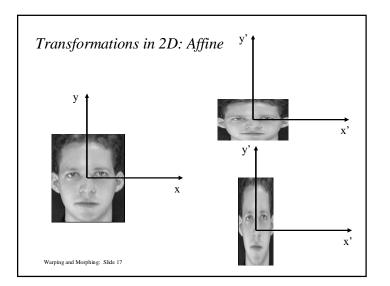


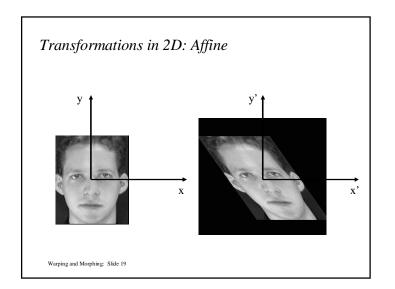


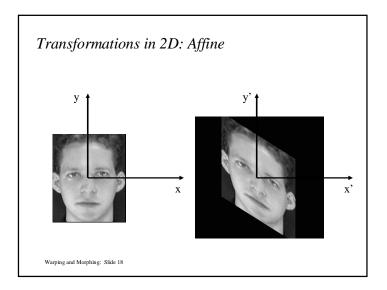
Transformations in 3D: Rigid
• Rigid transformation (6 degrees of freedom)
$ \begin{pmatrix} x'\\y'\\z'\\1 \end{pmatrix} = \begin{pmatrix} r_{01} & r_{02} & r_{03} & t_x\\r_{11} & r_{12} & r_{13} & t_y\\r_{21} & r_{22} & r_{23} & t_z\\0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x\\y\\z\\1 \end{pmatrix} = T_{rigid}^x \cdot T_{rigid}^y \cdot T_{rigid}^z \cdot \begin{pmatrix} x\\y\\z\\1 \end{pmatrix} + \begin{pmatrix} t_x\\t_y\\t_z\\0 \end{pmatrix} $
 t_x, t_y, t_z describe the 3 translations in x, y and z r₁₁,, r₃₃ describe the 3 rotations around x, y, z
Warping and Morphing: Slide 14

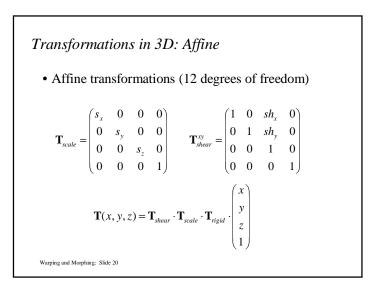
Tran	isfori	natio	ns in	ı 3.	D: I	Rigid					
T ^x _{rigid}	$= \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$0 \\ \cos \alpha \\ \sin \alpha \\ 0$	$0 \\ -\sin \alpha$	α χ	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$	\mathbf{T}_{rigid}^y	=	$ \begin{array}{c} \cos \alpha \\ 0 \\ -\sin \alpha \\ 0 \end{array} $	0 1 0 0	$\sin \alpha \\ 0 \\ \cos \alpha \\ 0$	0 0 0 1
\mathbf{T}^{z}_{rigid}	$= \begin{pmatrix} \cos \theta \\ \sin \theta \\ \theta \\ \theta \\ \theta \end{pmatrix}$	sα – 1α c)	$\sin \alpha$ $\cos \alpha$ 0 0	0 0 1 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$						

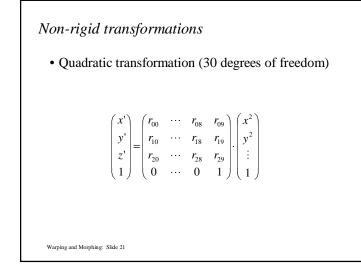
Transformations in 2D: Affine
• Affine transformations (6 degrees of freedom)
$\mathbf{T}_{scale} = \begin{pmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad \mathbf{T}_{shear} = \begin{pmatrix} 1 & sh & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
$\mathbf{T}(x, y) = T_{shear} \cdot T_{scale} \cdot T_{rigid} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$
Warping and Morphing: Slide 16

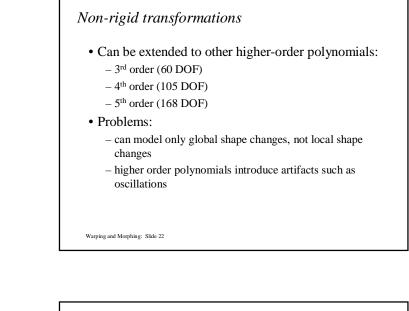


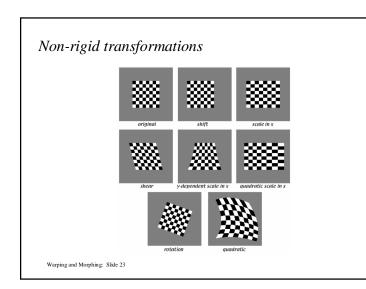


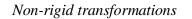




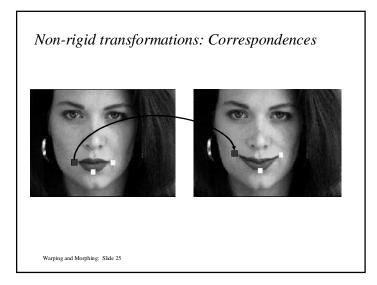


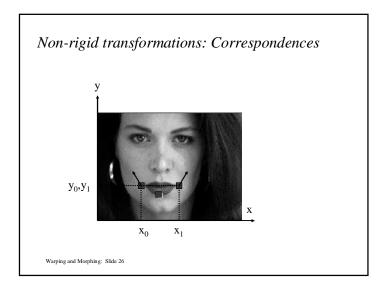


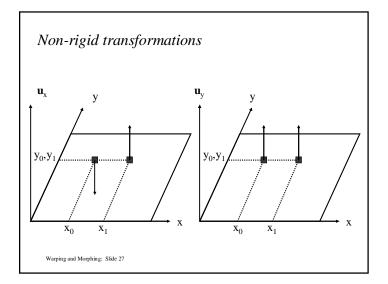


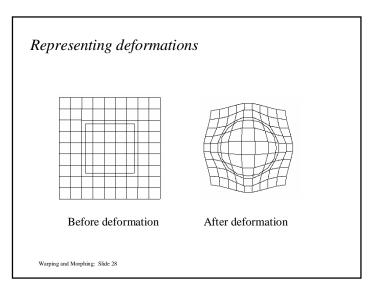


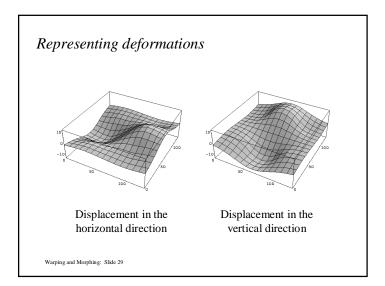
Warping and Morphing: Slide 24

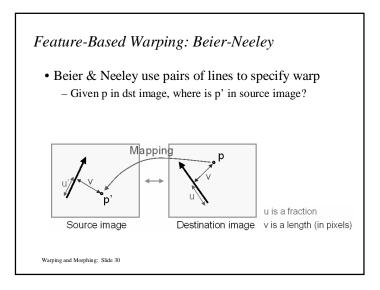


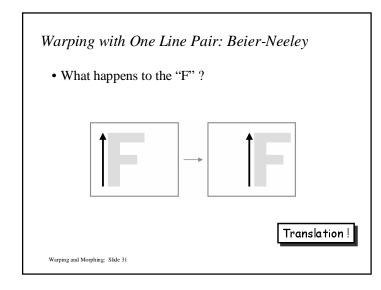


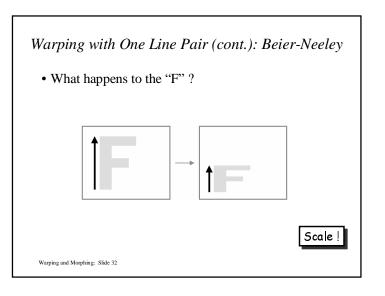


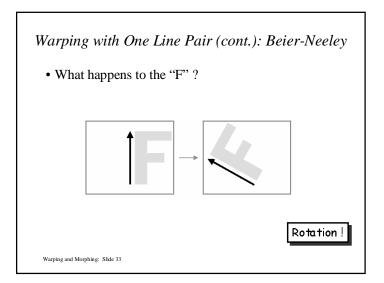


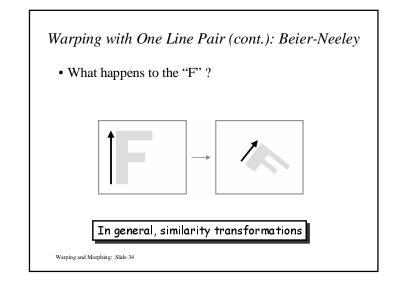


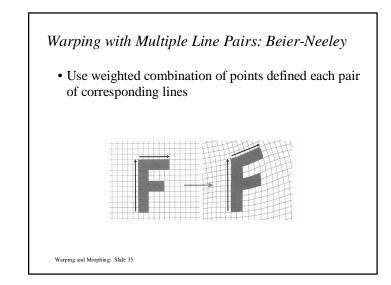


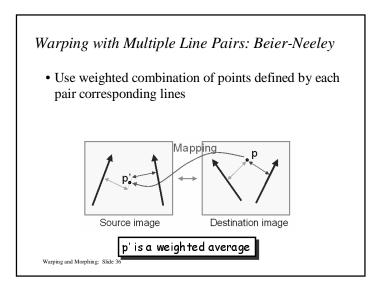


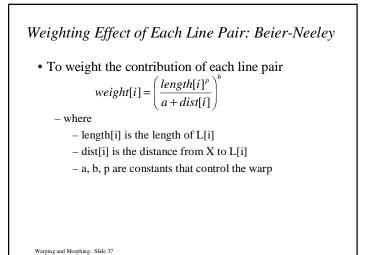


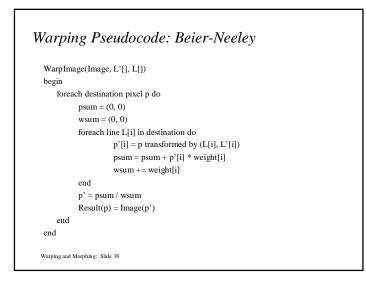


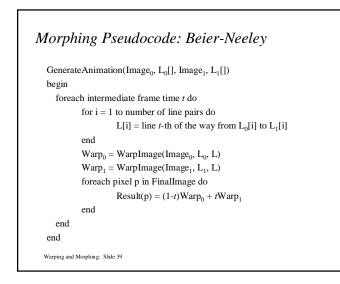


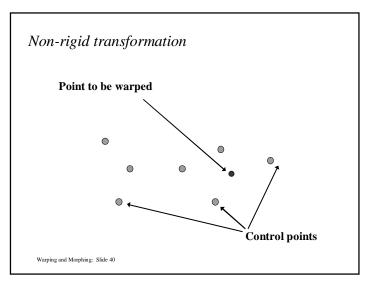


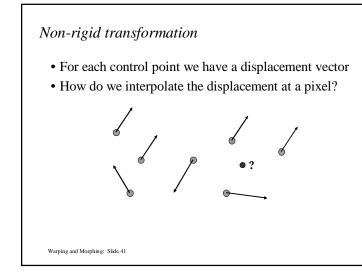


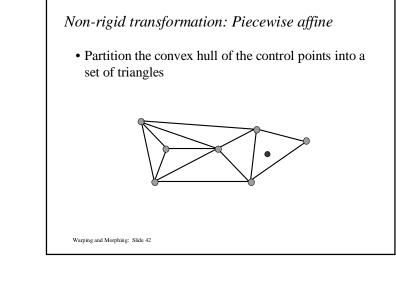


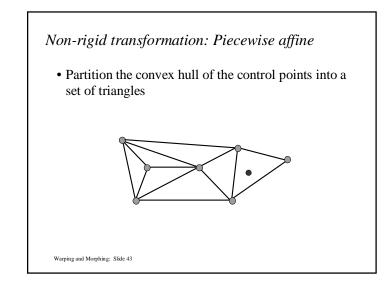


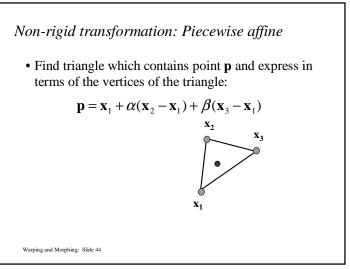












Non-rigid transformation: Piecewise affine

• Or
$$\mathbf{p} = \gamma \mathbf{x}_1 + \alpha \mathbf{x}_2 + \beta \mathbf{x}_3$$
 with $\gamma = 1 - (\alpha + \beta)$

• Under the affine transformation this point simply maps to

$$\mathbf{p}' = \gamma \mathbf{x}_1' + \alpha \mathbf{x}_2' + \beta \mathbf{x}_3'$$

Warping and Morphing: Slide 45

Non-rigid transformation: Piecewise affineImage: Image: ImageImage: Image: I

Non-rigid transformation: Piecewise affine • Problem: Produces continuous deformations, but the deformation may not be smooth. Straight lines can be kinked across boundaries between triangles