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Interactive Computer Graphics

• Lecture 15: Warping and Morphing
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Warping and Morphing

• What is 
– warping ?

– morphing ?

Warping and Morphing:  Slide 4

Warping

• The term warping refers to the geometric 
transformation of graphical objects (images, surfaces 
or volumes) from one coordinate system to another 
coordinate system. 

• Warping does not affect the attributes of the 
underlying graphical objects.

• Attributes may be
– color (RGB, HSV)

– texture maps and coordinates

– normals, etc.
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Morphing

• The term morphing stands for metamorphosing and 
refers to an animation technique in which one 
graphical object is gradually turned into another. 

• Morphing can affect both the shape and attributes of 
the graphical objects.
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Examples
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Examples
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Mapping• Define transformation which maps every point (x, y) in the  
source coordinates to the corresponding point (x’, y’) in the 
destination coordinates (or vice-versa, if invertible)
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Warping

• Transformation                            which defines the 
spatial relationship between two images:

( ) ( ) ( ) ),(,,',' yxyxyxyx uT +==

( ) ( )',',:T yxyx →

T(x,y,z)(x,y)

(x’,y’)u(x,y)Image A Image B
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Transformations

• Dimensions of transformation
– 1D: curves
– 2D: images
– 3D: volumes

• Types of transformations
– rigid
– affine
– polynomial

– quadratic
– cubic

– splines
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Transformations in 2D: Rigid

• Rigid transformation (3 degrees of freedom)

• tx and ty describe the two translations in x and y
• α describes the rotation around the center of the 
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Transformations in 2D: Rigid
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Transformations in 2D: Rigid
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Transformations in 3D: Rigid

• Rigid transformation (6 degrees of freedom)

• tx, ty, tz describe the 3 translations in x, y and z
• r11, ..., r33 describe the 3 rotations around x, y, z
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Transformations in 3D: Rigid −
=
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Transformations in 2D: Affine

• Affine transformations (6 degrees of freedom)=
100
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Transformations in 2D: Affine
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Transformations in 2D: Affine
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Transformations in 2D: Affine

y

x

y’

x’

Warping and Morphing:  Slide 20

Transformations in 3D: Affine

• Affine transformations (12 degrees of freedom)=
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Non-rigid transformations

• Quadratic transformation (30 degrees of freedom)⋅= 11001
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Non-rigid transformations

• Can be extended to other higher-order polynomials:
– 3rd order (60 DOF)

– 4th order (105 DOF)

– 5th order (168 DOF)

• Problems:
– can model only global shape changes, not local shape 

changes

– higher order polynomials introduce artifacts such as 
oscillations
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Non-rigid transformations
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Non-rigid transformations
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Non-rigid transformations: Correspondences
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Non-rigid transformations: Correspondences
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Non-rigid transformations
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Representing deformations

Before deformation After deformation
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Representing deformations

Displacement in the
horizontal direction

Displacement in the
vertical direction
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Feature-Based Warping: Beier-Neeley

• Beier & Neeley use pairs of lines to specify warp
– Given p in dst image, where is p’ in source image?
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Warping with One Line Pair: Beier-Neeley

• What happens to the “F” ? Translation !
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Warping with One Line Pair (cont.): Beier-Neeley

• What happens to the “F” ? Scale !
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Warping with One Line Pair (cont.): Beier-Neeley

• What happens to the “F” ? Rotation !
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Warping with One Line Pair (cont.): Beier-Neeley

• What happens to the “F” ?In general, similarity transformations
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Warping with Multiple Line Pairs: Beier-Neeley

• Use weighted combination of points defined each pair 
of corresponding lines
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Warping with Multiple Line Pairs: Beier-Neeley

• Use weighted combination of points defined by each 
pair corresponding linesp’ is a weighted average
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Weighting Effect of Each Line Pair: Beier-Neeley

• To weight the contribution of each line pair

– where

– length[i] is the length of L[i]

– dist[i] is the distance from X to L[i]

– a, b, p are constants that control the warp
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Warping Pseudocode: Beier-Neeley

WarpImage(Image, L’[], L[])

begin

foreach destination pixel p do

psum = (0, 0)

wsum = (0, 0)

foreach line L[i] in destination do

p’[i] = p transformed by (L[i], L’[i])

psum = psum + p’[i] * weight[i]

wsum += weight[i]

end

p’ = psum / wsum

Result(p) = Image(p’)

end

end
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Morphing Pseudocode: Beier-Neeley

GenerateAnimation(Image0, L0[], Image1, L1[])

begin

foreach intermediate frame time t do

for i = 1 to number of line pairs do

L[i] = line t-th of the way from L0[i] to L1[i]

end

Warp0 = WarpImage(Image0, L0, L)

Warp1 = WarpImage(Image1, L1, L)

foreach pixel p in FinalImage do

Result(p) = (1-t)Warp0 + tWarp1

end

end

end
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Non-rigid transformation

Control points

Point to be warped
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Non-rigid transformation

• For each control point we have a displacement vector

• How do we interpolate the displacement at a pixel?

?
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Non-rigid transformation: Piecewise affine

• Partition the convex hull of the control points into a 
set of triangles
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Non-rigid transformation: Piecewise affine

• Partition the convex hull of the control points into a 
set of triangles
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Non-rigid transformation: Piecewise affine

• Find triangle which contains point p and express in 
terms of the vertices of the triangle:  

x1

x3

x2

)()( 13121 xxxxxp −+−+= βα
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Non-rigid transformation: Piecewise affine

• Or                                       with

• Under the affine transformation this point simply 
maps to

321 xxxp βαγ ++= )(1 βαγ +−=

'''' 321 xxxp βαγ ++=
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Non-rigid transformation: Piecewise affine

Warping and Morphing:  Slide 47

Non-rigid transformation: Piecewise affine

• Problem: Produces continuous deformations, but the 
deformation may not be smooth. Straight lines can be 
kinked across boundaries between triangles


