Tutorial 1: Device Independent Graphics

1. A user works in her/his co-ordinate system (called the world coordinate system) which is a square area with corner co-ordinates :

$$
[(-20,-50),(80,50)]
$$

The picture (isn't terribly exciting) and consists of a triangle with vertices $[-5,30],[50,30]$ and $[-5,-10]$.
The user's area is mapped into a square viewport (part of a screen window), which uses device coordinates that are in pixel units. The corner device co-ordinates are:

$$
[(409,613),(613,818)]
$$

The whole screen has pixel addresses from [0..1023] for both x and y .
a. Sketch roughly what will appear on the screen (ignoring anything else the operating system may provide)
b. What pixel corresponds to the origin $[0,0]$ in the user's co-ordinate system?
c. The mapping between user's and device co-ordinates is given by:

$$
\begin{aligned}
& x^{\prime}=A x+B \\
& y^{\prime}=C y+D
\end{aligned}
$$

Find A, B, C, D
d. The user moves the window by 50 pixels in the positive y direction and 100 pixels in the positive x direction. Find the new values of A B C D and sketch what will appear in the window on the screen.
e. The user moves the window back where it was and then performs a "zoom in" operation by changing the world coordinate system, so that the picture is magnified to 4 times its original area (or twice in each direction). The origin remains at the same place. Recalculate the window co-ordinates and the above constants, A B C D.
f. Assuming that whatever falls outside the user window is clipped from view, sketch again what will appear on the screen.

