Tutorial 3: Texture Mapping

This tutorial concerns texture mapping onto polygons. We will consider the case of a terminal in which individual pixels can be set to any intensity in the range $[0..I_{max}]$.

Suppose that the following function is used to define a texture:

 $I = I_{max}(\alpha + \beta)/2$

I is the intensity that the pixel of a quadrilateral, corresponding to position $[\alpha,\beta]$ in texture space, will be set to.

The quadrilateral is projected onto the screen, and its four corners appear at coordinates: P1=[5,5], P2=[15,30], P3=[50,50] and P4=[40,10]. Assuming that P1 corresponds to α =0, β =0, P2 to α =0, β =1, P3 to α =1, β =1 and P4 to α =1, β =0, calculate the corresponding [α , β] and hence the intensity to be applied to the point Pt=[30,30], using the bi-linear interpolation method given in the lectures. (ie solve for [α , β] using p= $\alpha\beta$ (c-b) + α a + β b where p=Pt-P1, a=P4-P1, b= P2-P1 and c=P3-P4)

Computing every pixel by using bi-linear interpolation is very time consuming, since the solution of a quadratic is required. By doing the calculations differentially, much computation time can be saved.

Consider the line from **P1** to **P2**, since at **P1** β =0 and at **P2** β =1, and there are 26 pixels on the line, the differential change in β from one pixel to the next is 1/25. Thus, we can find the values of β at each pixel simply by adding the differential as we move from one pixel to its neighbour.

What are the differentials in α and β for the four lines bounding the quadrilateral?

Now consider the horizontal line through the point [30,30]. Using the differential method above, find the values of α and β at the points where it intersects the sides of the quadrilateral, and hence find the differentials in α and β along the line. Use these values to compute α and β at the point [30,30] and check your result with the first part. Can you suggest why the two methods do not give exactly the same result?

Notice that with the differential method, calculating α and β for most of the pixels in the quadrilateral requires only two additions, and hence is much faster.