Tutorial 9: Warping and Morphing

1. Explain what is meant by the following equation:

$$
\text { morphing }=(\text { warping })^{2}+\text { blending }
$$

2. In the algorithm developed by Beier and Neeley pairs of lines are used to specify the warping. In a concrete example two pairs of lines specify a 2 D warping: In the source image the line L_{1} starts at $(1,1)$ and ends at $(1,9)$. The line L_{2} starts at $(9,2)$ and ends at $(9,8)$. In the target image the corresponding line L_{1} starts at $(1,1)$ and ends at $(1,9)$ while L_{2} starts at $(3,2)$ and ends at $(9,2)$. Calculate where the pixel $\mathbf{p}=(5,5)$ in the source image would map to in the target image. Assume that the constants controlling the warping are $a=b=p=1$.
3. An image with 300×175 pixels is warped using a two-dimensional free-form deformation based on linear B-splines defined by a 6×6 mesh of control points.
a. Calculate the spacing between control points in pixels.
b. Calculate the pixel coordinates for the following B-spline integer lattice coordinates i, j and the fractional lattice coordinates u, v :
i. $(\mathrm{i}, \mathrm{j})=(1,1)$ and $(\mathrm{u}, \mathrm{v})=(0,0)$
ii. $(\mathrm{i}, \mathrm{j})=(1,1)$ and $(\mathrm{u}, \mathrm{v})=(0.5,0.5)$
iii. $(\mathrm{i}, \mathrm{j})=(1,3)$ and $(\mathrm{u}, \mathrm{v})=(0.75,0.2857)$
c. Calculate the B-spline integer lattice coordinates i, j and the fractional lattice coordinates u, v for the following pixels:
i. $(x, y)=(120,140)$
ii. $(x, y)=(100,100)$
iii. $(x, y)=(150,130)$
d. Calculate the new location of a pixel $(x, y)=(135,122.5)$ after warping. The matrix of control points looks as follows:

$(1,4)$	$(-3,7)$	$(3,8)$	$(4,7)$	$(0,1)$	$(2,3)$
$(-3,7)$	$(-2,9)$	$(2,7)$	$(3,1)$	$(2,-2)$	$(2,2)$
$(4,2)$	$(3,8)$	$(2,1)$	$(4,2)$	$(2,1)$	$(3,1)$
$(3,2)$	$(2,9)$	$(-3,8)$	$(6,8)$	$(3,4)$	$(3,5)$
$(-1,3)$	$(-2,3)$	$(1,3)$	$(2,3)$	$(8,3)$	$(-4,2)$
$(0,0)$	$(-2,1)$	$(1,1)$	$(-2,2)$	$(1,2)$	$(0,0)$

