

Warping and morphing

Warping and Morphing: Slide 2

Warping

- The term warping refers to the geometric transformation of graphical objects (images, surfaces or volumes) from one coordinate system to another coordinate system.
- Warping does not affect the attributes of the underlying graphical objects.
- Attributes may be
 - color (RGB, HSV)
 - texture maps and coordinates
 - normals, etc.

Morphing

Warping and Morphing: Slide 5

Warping and Morphing: Slide 7

- The term morphing stands for metamorphosing and refers to an animation technique in which one graphical object is gradually turned into another.
- Morphing can affect both the shape and attributes of the graphical objects.

Warping and Morphing What is warping ? morphing ?

Warping and Morphing

- What is
 - warping ?
 - morphing ?

Warping and Morphing: Slide 6

Morphing = *Object Averaging*

- The aim is to find "an average" between two objects
 - Not an average of two images of objects...
 - ...but an image of the <u>average object</u>!
 - How can we make a smooth transition in time?
 Do a "weighted average" over time t
- How do we know what the average object looks like?
 - Need an algorithm to compute the average geometry and appearance

Scaling

- *Scaling* a coordinate means multiplying each of its components by a scalar
- *Uniform scaling* means this scalar is the same for all components:

2x2 Matrices

• What types of transformations can be represented with a 2x2 matrix?

2x2 Matrices

• What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

2x2 Matrices

• What types of transformations can be represented with a 2x2 matrix?

2D Translation?

 $x' = x + t_x$ NO! $y' = y + t_y$

Only linear 2D transformations can be represented with a 2x2 matrix

Non-rigid transformations

Warping and Morphing: Slide 34

• Quadratic transformation (30 degrees of freedom)

($\langle x' \rangle$		(r_{00})	•••	r_{08}	r_{09}	$\left(x^{2}\right)$
	<i>y</i> '	_	r_{10}		r_{18}	r_{19}	y^2
	<i>z</i> '	_	r_{20}		r_{28}	r_{29}	:
	1		0		0	1)	$\left(1\right)$
							. ,

Non-rigid transformations

- Can be extended to other higher-order polynomials:
 - 3rd order (60 DOF)
 - -4^{th} order (105 DOF)
 - 5th order (168 DOF)
- Problems:

- can model only global shape changes, not local shape changes
- higher order polynomials introduce artifacts such as oscillations

Warping with Multiple Line Pairs: Beier-Neeley

• Use weighted combination of points defined by each pair corresponding lines

<text><list-item>

<text><text><image>

Non-rigid transformation: Piecewise affine

• Or
$$\mathbf{p} = \gamma \mathbf{x}_1 + \alpha \mathbf{x}_2 + \beta \mathbf{x}_3$$
 with $\gamma = 1 - (\alpha + \beta)$

• Under the affine transformation this point simply maps to

$$\mathbf{p'} = \gamma \mathbf{x}_1' + \alpha \mathbf{x}_2' + \beta \mathbf{x}_3$$

Triangulations

- A *triangulation* of set of points in the plane is a *partition* of the convex hull to triangles whose vertices are the points, and do not contain other points.
- There are an exponential number of triangulations of a point set.

An O(n³) Triangulation Algorithm

- Repeat until impossible:
 - Select two sites.
 - If the edge connecting them does not intersect previous edges, keep it.

"Quality" Triangulations

- Let $\alpha(T) = (\alpha_1, \alpha_2, ..., \alpha_{3t})$ be the vector of angles in the triangulation T in increasing order.
- A triangulation T_1 will be "better" than T_2 if $\alpha(T_1) > \alpha(T_2)$ lexicographically.
- The Delaunay triangulation is the "best" – Maximizes smallest angles

B-splines

- Free-Form Deformation (FFD) are a common technique in Computer Graphics for modelling 3D deformable objects
- FFDs are defined by a mesh of control points with uniform spacing
- FFDs deform an underlying object by manipulating a mesh of control points
 - control point can be displaced from their original location
 - control points provide a parameterization of the transformation

Warping and Morphing: Slide 75

FFDs using linear B-splines

• FFDs based on linear B-splines can be expressed as a 2D (3D) tensor product of linear 1D B-splines:

$$\mathbf{u}(x, y) = \sum_{l=0}^{1} \sum_{m=0}^{1} B_{l}(u) B_{m}(v) \phi_{i+l,j+m}$$

where
$$i = \left\lfloor \frac{x}{\delta_{x}} \right\rfloor, \ j = \left\lfloor \frac{y}{\delta_{y}} \right\rfloor, \ u = \frac{x}{\delta_{x}} - \left\lfloor \frac{x}{\delta_{x}} \right\rfloor, \ v = \frac{y}{\delta_{y}} - \left\lfloor \frac{y}{\delta_{y}} \right\rfloor$$

and B_i corresponds to the B-spline basis functions

 $B_0(s) = 1 - s$ $B_1(s) = s$

and B_i corresponds to the B-spline basis functions $B_0(s) = (1-s)^3/6$ $B_2(s) = (-3s^3 + 3s^2 + 3s + 1)/6$ $B_1(s) = (3s^3 - 6s^2 + 4)/6$ $B_3(s) = s^3/6$ Warping and Morphing: Slide 77

FFI	FFDs: 2D Example						
0,0	0,0	1,0	0,3	1,1	2,3		
3,2	3,2	-7,2	3,1	2,-9	-3,1		
1,3	1,0	5,8	3,7	0,0	2,0		
4,3	2,1	2,-2	3,-1	1,7	0,-3		
0,0	-1,-1	1,3	3,2	3,4	2,8		
0,0	-2,-2	1,4	1,2	0,0	2,1		
Warpi	ng and Morphing:	Slide 83					

FFDs

- Used for warping:
 - Lee et al. (1997)
- Advantages:
 - Control points have local influence since the basis function has finite support
 - Fast
 - linear (in 3D: 2 x 2 x 2 = 8 operations per warp)
 - cubic (in 3D: 4 x 4 x 4 = 64 operations per warp)
- Disadvantages:
 - Control points must have uniform spatial distribution

Morphing

```
GenerateAnimation(Image<sub>0</sub>, Image<sub>1</sub>)

begin

foreach intermediate frame time t do

Warp<sub>0</sub> = WarpImage(Image<sub>0</sub>, t)

Warp<sub>1</sub> = WarpImage(Image<sub>1</sub>, t)

foreach pixel p in FinalImage do

Result(p) = (1-t)Warp<sub>0</sub> + tWarp<sub>1</sub>

end

end

end

Marging and Morphing: Slide 93
```

Image Combination

- Determines how to combine attributes associated with geometrical primitives. Attributes may include
 - color
 - texture coordinates
 - normals
- Blending
 - cross-dissolve
 - adaptive cross-dissolve
 - alpha-channel blending
 - z-buffer blending

Image Com	bination: A	lpha ch	annel bi	lending	
	Operation	W _a	W _b		
	A	1	0	_	
	В	0	1		
	A over B	1	$1-\alpha_a$		
	<i>A</i> in <i>B</i>	$\alpha_{_b}$	$0-\alpha_a$		
	A out B	$1-\alpha_b$	0		
	A plus A	1	1		
		•	'		
Warping and Morphing: Sl	iide 100				

