Interactive Computer Graphics

* Lecture 15+16: Warping and Morphing

Warping and Morphing: Slide 1

Warping and morphing

Warping and Morphing: Slide 2

Warping and Morphing

¢ What is

— warping ?

— morphing ?

~

Warping and Morphing: Slide 3

Warping

*The term warping refers to the geometric
transformation of graphical objects (images, surfaces
or volumes) from one coordinate system to another
coordinate system.

* Warping does not affect the attributes of the
underlying graphical objects.
* Attributes may be
— color (RGB, HSV)
— texture maps and coordinates
— normals, etc.

Warping and Morphing: Slide 4

Morphing

* The term morphing stands for metamorphosing and
refers to an animation technique in which one
graphical object is gradually turned into another.

* Morphing can affect both the shape and attributes of
the graphical objects.

Warping and Morphing: Slide 5

Warping and Morphing

¢ What is

— warping ?

— morphing ?

Warping and Morphing: Slide 6

Warping and Morphing

¢ What is

— warping ?

— morphing ?

Warping and Morphing: Slide 7

Morphing = Object Averaging

* The aim is to find “an average” between two
objects
— Not an average of two images of objects...
— ...but an image of the average object!
— How can we make a smooth transition in time?
— Do a “weighted average” over time t
* How do we know what the average object looks
like?
— Need an algorithm to compute the average geometry
and appearance

Warping and Morphing: Slide §

Averaging . Morphing using cross-dissolve

@ [
- '
What's the average v=Q-P ——
of P and Q?
P
Linear Interpolation .
(Affine Combination): * Interpolate whole images:
New point aP + bQ, _ *;
defined only when a+b = 1 P+0.5v P+1.5v Imagehalfway = t*Image, + (1-t)*image,
2 - = 5(Q—-P = P+15Q-P e .
So aP+bQ ishuie S R e g C =) + This is called cross-dissolve
(extrapolation)

 But what is the images are not aligned?

Warping and Morphing: Slide 9 Warping and Morphing: Slide 10

Morphing using warping and cross-dissolve Image warping

* image filtering: change range of image

. g(X) If)

I/ ="l

* image warping: change domain of image

‘ " g() f(T(x))A
* Align first, then cross-dissolve N

X

Warping and Morphing: Slide 11 Warping and Morphing: Slide 12

Image warping

* image filtering: change range of image

" 8() = hI() o

* image warping: change domain of image

gt =/(T()

Warping and Morphing: Slide 13

Parametric (global) warping

» Examples of parametric warps:

aspect

"
affine RN cylindrical

Warping and Morphing: Slide 14

Parametric (global) warping

p’=xy)

* Transformation T can be expressed as a mapping:

p’=T(p)
* Transformation T can be expressed as a matrix:
p’=M*p

Warping and Morphing: Slide 15

Scaling

* Scaling a coordinate means multiplying each of its components
by a scalar

 Uniform scaling means this scalar is the same for all
components:

Warping and Morphing: Slide 16

Scaling

* Non-uniform scaling: different scalars per component:

Warping and Morphing: Slide 17

Scaling

* Scaling operation:

¢ Or, in matrix form:

What is the inverse of S?

Warping and Morphing: Slide 18

x'=ax
y'=by
' a 0][x
v |0 by
H—l

scaling matrix S

2-D Rotation
4))
o X,Y)
(X, y)
x’ =x cos(0) - y sin(0)
0 y’ =x sin(0) +y cos(0)

Warping and Morphing: Slide 19

2-D Rotation

* 4 (X’a y’)

(X,)

94

Warping and Morphing: Slide 20

x =1 c0s (¢)
y =rsin (§)
x’=rcos (¢ +0)
y’ =rsin (¢ + 0)

Trig Identity...
x’ =1 cos(¢) cos(0) — r sin(¢p) sin(0)
y’ = r sin(¢) sin(0) + r cos(¢) cos()

Substitute. ..
x’ =x cos(0) - y sin(0)
y’ = x sin(0) +y cos(0)

2-D Rotation

* This is easy to capture in matrix form:
x' ~ cos(@) - sin(@ x
y} B [sin(@) cos(9) [y}

—_——
R

» Even though sin(0) and cos(8) are nonlinear functions of 6,
— X’ is a linear combination of x and y

— y’ is a linear combination of x and y
* What is the inverse transformation?
— Rotation by -6
— For rotation matrices, det(R)=1s0 R™' = R”

Warping and Morphing: Slide 21

2x2 Matrices

* What types of transformations can be
represented with a 2x2 matrix?

2D Identity?
x'=x x7_[1 O]fx
y'=y V' [0 1]_y]
2D Scale around (0,0)?
x'=s, *x x'T [s., O][x
y'=s,*y [y'__[o Sy y}

Warping and Morphing: Slide 22

2x2 Matrices

* What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?

xX'=cos@*x-sin®@*y [x'] [cos® -sin®][x

Y'=sin@*x+cos®*y y| |sin® cos® ||y
2D Shear?

xX'=x+sh *y (x7 [1 sh][x

Y'=sh *x+y |V sh, 1 ||y

Warping and Morphing: Slide 23

2x2 Matrices

* What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?

x'=-x [xT_[-1 0][x

Y=y V10 1y
2D Mirror over (0,0)?

x'=-x [(xXT_[-1 O01[x

y'==-y VLo -1y

Warping and Morphing: Slide 24

2x2 Matrices

* What types of transformations can be
represented with a 2x2 matrix?

2D Translation?
X'=x+t,

y'=y+t,

NO!

Only linear 2D transformations
can be represented with a 2x2 matrix

Warping and Morphing: Slide 25

All 2D Linear Transformations

* Linear transformations are combinations of ...

— Scale, ,

— Rotation, 2 _||@ b[x
— Shear, and y' c dl|ly
— Mirror

+ Properties of linear transformations:
— Origin maps to origin
— Lines map to lines
— Parallel lines remain parallel
— Ratios are preserved
— Closed under composition

Warping and Morphing: Slide 26

Homogeneous Coordinates

* Q: How can we represent translation as a matrix
transformation?
X'=x+t,
Y'=y+t,

* A: Using the translation parameters as the rightmost
column:

Warping and Morphing: Slide 27

Basic 2D Transformations

¢ Basic 2D transformations as 3x3 matrices

x' 1 0 ¢][x x' s, 0 0][x
Yi=10 1 ¢ |y Y(=|0 s, Oy
1 00 1|1 1 0 0 1|1
Translate Scale
x' cos® -sin® 0][x x' 1 sh. O][x
V'|=|sin® cos® 0f|y Y'|=(sh, 1 Ofly
1 0 0 1|1 1 0 0 1]1
Rotate Shear

Warping and Morphing: Slide 28

SR

2D image transformations

’ /_m projective
translation|
_—r

gt .

Euclidean

Name Matrix | #D.O.F. | Preserves: Ieon
iranslation (1], L]
rigid (Buclidean) | [Rt], @
similarity [sr[t],, <
affine [a],, L7
projective Al [l

Warping and Morphing: Slide 29

Transformations

» Dimensions of transformation
— 1D: curves
—2D: images
— 3D: volumes
* Types of transformations
—rigid
— affine
— polynomial
— quadratic
— cubic
— splines

Warping and Morphing: Slide 30

Transformations in 3D: Rigid

* Rigid transformation (6 degrees of freedom)

1
X rOI roz r03 tx X X tx
\l
Y9 |m o he s LY ST TV T y N z,
= ‘ =Lyigia L rigia " rigia P
z ny Typ I z z z
1 0 0 0 1 1 1

e T describe the 3 translations in x, y and z
* 1y}, -.., I33 describe the 3 rotations around X, y, z

Warping and Morphing: Slide 31

Transformations in 3D: Rigid

1 0 0 0 cosa 0 sina 0
. 0 cosa -sina 0 , 0 1 0 0
0 sine cosa 0 Traa = —-sina 0 cosaa O
0 0 0 1 0 0 0 1
cosae —-sina 0 0
T, - sina cosa 0 0
0 0 10
0 0 0 1

Warping and Morphing: Slide 32

Transformations in 3D: Affine

* Affine transformations (12 degrees of freedom)

s, 0.0 0 1 0 sh, 0
0 s, 00 o1 sk, 0
_ b ™ = y
scale shear
0 0 s. 0 1 0
0 0 1 0 1

0
1
00
00
X
Yy
T(x,y,z) = Toer " Tocate 'Trigid : 2
1

Warping and Morphing: Slide 33

Non-rigid transformations

* Quadratic transformation (30 degrees of freedom)

X Too 0 Tos Too
H n e I 2
Y| o 18 T
1
z Ty Iy T
1 0 0 1 1

Warping and Morphing: Slide 34

Non-rigid transformations

* Can be extended to other higher-order polynomials:

— 3t order (60 DOF)

— 4% order (105 DOF)

— 5t order (168 DOF)
* Problems:

— can model only global shape changes, not local shape
changes

— higher order polynomials introduce artifacts such as
oscillations

Warping and Morphing: Slide 35

Image warping

Sfx.y) gx’y")

* Given a coordinate transform (x’,y’) = T(x,y) and a
source image f(x,y), how do we compute a
transformed image g(x’,y’) = f(T(x,y))?

Warping and Morphing: Slide 36

Forward warping

* Send each pixel f(x,y) to its corresponding location
(x’y’) = T(x,y) in the second image

Warping and Morphing: Slide 37

Forward warping

y y’t»

T Ay T gy

» Send each pixel f{x,y) to its corresponding location (x’,y’) =
T(x,y) in the second image
Q: what if pixel lands “between” two pixels?

Warping and Morphing: Slide 38

Forward warping

y y’t»

T Ay T gy

+ Send each pixel f{x,y) to its corresponding location (x’,y’) = T(x,y) in the
second image
Q: what if pixel lands “between” two pixels?
A: distribute color among neighboring pixels (x’,y’)
— known as “splatting”

Warping and Morphing: Slide 39

Inverse warping

T fy) X gy

* Get each pixel g(x’,y’) from its corresponding
location (x,y) = T-!(x’,y’) in the first image

Warping and Morphing: Slide 40

10

Inverse warping

y y’f_»

o fxy) Togxy)

» Get each pixel g(x,y’) from its corresponding location
(x,y) = T-'(x’y’) in the first image
Q: what if pixel comes from “between” two pixels?

Warping and Morphing: Slide 41

Inverse warping

y y’f_»

o fxy) Togxy)

* Get each pixel g(x’,y’) from its corresponding location
(x,y) = T-'(x",y’) in the first image
Q: what if pixel comes from “between” two pixels?
A: Interpolate color value from neighbors
— nearest neighbor, bilinear, Gaussian, bicubic

Warping and Morphing: Slide 42

Interpolation

Warping and Morphing: Slide 43

Interpolation

Warping and Morphing: Slide 44

1

Interpolation: Linear, 2D

n=1

f(p)=) wf(p)

i=0

P;

Warping and Morphing: Slide 45

w,=(1-r)1-5)

w =r(1-ys)
w,=(1-r)s
Wy =718

Interpolation: Linear, 3D

Wy = (=P =)0 -1)
w,=r(l-s)1-1)

w, =(1-r)s(1-1)

wy =rs(1-1)
w,=(1-r)1-s)t

ws =r(1-s)t

Ws =(1-r)st

w, = rst
Py P,

Warping and Morphing: Slide 46

Non-rigid transformations

Warping and Morphing: Slide 47

Non-rigid transformations: Correspondences

Warping and Morphing: Slide 48

12

Non-rigid transformations: Correspondences

Warping and Morphing: Slide 49

Feature-Based Warping: Beier-Neeley

* Beier & Neeley use pairs of lines to specify warp

— Given p in destination image, where is p’ in source image?

: Mapping
y P
u) ‘\V‘./ > A/ v
: P’ -
& 2 uis a fraction
Source image Destination image v is a length (in pixels)

Warping and Morphing: Slide 50

Feature-Based Warping: Beier-Neeley

(p-x)-(y=-x) (p - x)- Perpendicular(y - x)

- v -+

R e (o) v+ Perpendicular(y'-x")

|
: Mapping
y P

7 \4 / S 2 Y

U
\p‘ ;

x’ 2 uis a fraction

Source image Destination image v is a length (in pixels)

Warping and Morphing: Slide 51

Feature-Based Warping: Beier-Neeley

* For each pixel p in the destination image
— find the corresponding u,v
— find the p’ in the source image for that u,v
— destination(p) = source(p’)

: Mapping
y P
u) ‘\V‘./ > A/ v
: P’ -
& 2 uis a fraction
Source image Destination image v is a length (in pixels)

Warping and Morphing: Slide 52

13

Warping with One Line Pair: Beier-Neeley

» What happens to the “F” ?

Translation |

Warping and Morphing: Slide 53

Warping with One Line Pair (cont.): Beier-Neeley

* What happens to the “F” ?

Scale !

Warping and Morphing: Slide 54

Warping with One Line Pair (cont.): Beier-Neeley

» What happens to the “F” ?

~

Warping and Morphing: Slide 55

Warping with One Line Pair (cont.): Beier-Neeley

* What happens to the “F” ?

| /

|In general, similarity transformations I

Warping and Morphing: Slide 56

14

Warping with Multiple Line Pairs: Beier-Neeley

» Use weighted combination of points defined each pair
of corresponding lines

Warping and Morphing: Slide 57

Warping with Multiple Line Pairs: Beier-Neeley

» Use weighted combination of points defined by each
pair corresponding lines

[Mappijn

S

Source image Destination image

p'is a weighted average |

Warping and Morphing: Slide 58

Weighting Effect of Each Line Pair: Beier-Neeley

* To weight the contribution of each line pair

=P b

weight[i] = lengthli]”
a +dist[i]

— where

— length[i] is the length of L[i]

— dist[i] is the distance from X to L[i]
—a, b, p are constants that control the warp

Warping and Morphing: Slide 59

Warping Pseudocode: Beier-Neeley

foreach destination pixel p do
psum = (0, 0)
wsum = (0, 0)
foreach line L[i] in destination do
p’[i] = p transformed by (L[i], L’[i])
psum = psum + p’[i] * weight[i]
wsum += weight[i]
end
p’ = psum / wsum
destination(p) = source(p”)
end

Warping and Morphing: Slide 60

15

Non-rigid transformation

Point to be warped

¢ '\.\
Control points

Warping and Morphing: Slide 62

Non-rigid transformation

* For each control point we have a displacement vector
* How do we interpolate the displacement at a pixel?

/ /
/ o
\ A

Warping and Morphing: Slide 63

Non-rigid transformation: Piecewise affine

* Partition the convex hull of the control points into a
set of triangles

Warping and Morphing: Slide 64

16

Non-rigid transformation: Piecewise affine

* Partition the convex hull of the control points into a
set of triangles

Warping and Morphing: Slide 65

Non-rigid transformation: Piecewise affine

* Find triangle which contains point p and express in
terms of the vertices of the triangle:
pP=X +O£(X2 _Xl) + ﬁ(xa _Xl)

X,
X3

Xy

Warping and Morphing: Slide 66

Non-rigid transformation: Piecewise affine
*Or p=y, +0x, + X, with y =1-(a+)

* Under the affine transformation this point simply
maps to

p'=¥X,'+ax,'+fx;'

Warping and Morphing: Slide 67

Non-rigid transformation: Piecewise affine

Warping and Morphing: Slide 68

17

Non-rigid transformation: Piecewise affine

* Problem: Produces continuous deformations, but the
deformation may not be smooth. Straight lines can be
kinked across boundaries between triangles

Warping and Morphing: Slide 69

Triangulations

* A triangulation of set of points in the plane is a partition of the
convex hull to triangles whose vertices are the points, and do
not contain other points.

* There are an exponential number of triangulations of a point
set.

Warping and Morphing: Slide 70

An O®?) Triangulation Algorithm

* Repeat until impossible:
— Select two sites.

— If the edge connecting them does not intersect previous
edges, keep it.

Warping and Morphing: Slide 71

“Quality” Triangulations

* Leta(7) = (a4, a, ..., 0;) be the vector of angles in the
triangulation T in increasing order.

A triangulation 7| will be “better” than T, if a(T}) > o(75,)
lexicographically.
* The Delaunay triangulation is the “best”
— Maximizes smallest angles

good bad

Warping and Morphing: Slide 72

18

Representing deformations

Before deformation After deformation

Warping and Morphing: Slide 73

Representing deformations

',:,'

Wil #&\.7
IR

-
ST
SSsd

2

LT

Displacement in the Displacement in the
horizontal direction vertical direction

Warping and Morphing: Slide 74

B-splines

* Free-Form Deformation (FFD) are a common
technique in Computer Graphics for modelling 3D
deformable objects

* FFDs are defined by a mesh of control points with
uniform spacing

* FFDs deform an underlying object by manipulating a
mesh of control points

— control point can be displaced from their original location

— control points provide a parameterization of the
transformation

Warping and Morphing: Slide 75

FFDs using linear B-splines

* FFDs based on linear B-splines can be expressed as a
2D (3D) tensor product of linear 1D B-splines:

u(x,y) = 2 23/ B, ()Pt jom

m=0

where

eI
= 67\/ ’]_

and B, corresponds to the B-spline basis functions
By(s)=1-s
B(s)=s

X
;U=

o

X

e
é,
y

Warping and Morphing: Slide 76

19

FFDs using cubic B-splines

* FFDs based on cubic B-splines can be expressed as a
2D (3D) tensor product of cubic 1D B-splines:

u(x,y) = i EB, B, ()Pt jom

m=0
el
5 5,

x

where

X
i=|=|-1, j=
léx]]

and B, corresponds to the B-spline basis functions
By(s)=(1-5)"/6 B,(s)= (=35’ +3s” +3s+1)/6
B/(s)=(3s’ 65> +4)/6 B,(s)=5"/6

y

o

'y

—|-1L, u=—-

o o

X

y X
'y

Warping and Morphing: Slide 77

FFDs: Example

* Image
— width 25 pixels
— height 20 pixels
* Free-form deformation
— 6 x 6 mesh of control points
— linear B-splines
* Calculate new position of pixel
-x=12
-y=11

Warping and Morphing: Slide 78

FFDs: 2D Example

Warping and Morphing: Slide 79

FFDs: 2D Example
0,0

[I
e |

Warping and Morphing: Slide 80

25,20

20

FFDs: 2D Example

L L &
') LA
.

Warping and Morphing: Slide 81

FFDs: 2D Example

R [L
-y

Warping and Morphing: Slide 82

FFDs: 2D Example
00 00 1,0 03 1,1 2,3

[4 4 ®
321 32 I 72 31 29| 3,1

[4 ®
13 1,0 58] 37 0,0 2,0

[®
43 21 22 31| 17 0,-3

[®
00] -1-11 13| 32 3.4 2,8

[4 4 ®
00 22 14| 12 0,0 2,1

{ 4 ®

Warping and Morphing: Slide 83

FFDs: 2D Example
8, =5
[4 s
[4 4
[J
||
[J
[4 4
{ J

Warping and Morphing: Slide 84

21

FFDs: 2D Example

* Calculate integer lattice coordinates 7, j:

12 11
== B =] =2
5 i-[4]
¢ Calculate fractional lattice coordinates u, v:
”=2_{EJ=0_4 V=E_FJ=0475
5 |5 4 |4

u(x, y) = 2 23/ @)B, (P21 20

m=0

Warping and Morphing: Slide 85

FFDs: 2D Example

0,0 0,0 1,0 0,3 1,1 2,3

32 2 712 1 bR _R
{

1,3 1 > 37 ; 3

43 A1 b - 17 R

0,0 =t : 35 34 >

0,0 =D 12| 12 11

Warping and Morphing: Slide 86

FFDs: 2D Example

u(x,y)

B,(0.4)B,(0.75)¢, , +
+ B,(0.4)B,(0.75), ; +
+ B,(0.4)B,(0.75)p;, +
+ B,(0.4)B,(0.75)¢;

5 2
0.15- +045- +
8 -2
3 3 2.34
+ 0.10- +0.3- =
7 -1 0.7

u(x,y)

Warping and Morphing: Slide 87

|

FFDs in 3D

source

Warping and Morphing: Slide 88

22

FFDs in 3D

\
, , /
|
) .

Warping and Morphing: Slide 89

FFDs

* Used for warping:
—Lee etal. (1997)
» Advantages:

— Control points have local influence since the basis function
has finite support

— Fast
— linear (in 3D: 2 x 2 x 2 = 8 operations per warp)
— cubic (in 3D: 4 x 4 x 4 = 64 operations per warp)
* Disadvantages:

— Control points must have uniform spatial distribution

Warping and Morphing: Slide 90

Morphing = (warping)? + blending

Forward
warping

—~

e

Backward
warping

Blending
R

Warping and Morphing: Slide 91

Morphing = (warping)? + blending

Warping and Morphing: Slide 92

23

Morphing

GenerateAnimation(Image,, Image,)
begin
foreach intermediate frame time ¢ do
Warp, = Warplmage(Image,, t)
Warp, = Warplmage(Image,, t)
foreach pixel p in Finallmage do
Result(p) = (1-tf)Warp,, + tWarp,
end
end
end

Warping and Morphing: Slide 93

Image Combination

* Determines how to combine attributes associated with
geometrical primitives. Attributes may include
— color
— texture coordinates
— normals
* Blending
— cross-dissolve
— adaptive cross-dissolve
— alpha-channel blending
— z-buffer blending

Warping and Morphing: Slide 94

Image Combination: Cross-dissolve
* Blending with cross-dissolve:
I=(-0)1,+t1,
— intensities
— RGB space

— HSV space
— texture space

Warping and Morphing: Slide 95

Image Combination: Cross-dissolve

RGB . Texture

-~ + =

Warping and Morphing: Slide 96

24

Image Combination: Adaptive cross-dissolve

* Adaptive cross-dissolve

I=(1=-w(p,1)1,(p)+w(p,A) 15(p)

— similar to cross-dissolve but blending function depends on

position in image

Warping and Morphing: Slide 97

Image Combination: Alpha channel blending

* Blending using RGBA images

IT=w,1,+w,1,

* Images are represented by quadruples:
—R, G, B indicating color
— Alpha channel encodes pixel coverage information
-a=0 transparent
—-0<a<1 semi-transparent

—a=1 opaque

Warping and Morphing: Slide 98

Image Combination: Alpha channel blending

+ Convention:
— RGBA represents a pixel with color C:

LA A

— What is meaning of:
0,1,0,1) Full green, full opacity
(0,1,0,0.5) Full green, semi-transparent
(0,0.5,0,1) Half green, full opacity
(1,1,1,0) White, transparent

Warping and Morphing: Slide 99

Image Combination: Alpha channel blending

Operation | w, w,
A 1 0
B 0
Aover B 1 1-

Ain B a, [(0-a
AoutB |l-a, 0
Aplus 4 1

Warping and Morphing: Slide 100

25

Image Combination: Z-buffer blending

* Blending using Z-buffer values:

](1

[=
I,

— defines an ordering
— can be used for layering

Warping and Morphing: Slide 101

ifz, <z,

else

26

