Interactive Computer Graphics

- Lecture 15+16: Warping and Morphing

Warping and morphing

Warping and Morphing: Slide 2

Warping and Morphing

- What is
- warping?
- morphing?

Warping and Morphing: Slide 3

Warping

- The term warping refers to the geometric transformation of graphical objects (images, surfaces or volumes) from one coordinate system to another coordinate system.
- Warping does not affect the attributes of the underlying graphical objects.
- Attributes may be
- color (RGB, HSV)
- texture maps and coordinates
- normals, etc.

[^0]
Morphing

- The term morphing stands for metamorphosing and refers to an animation technique in which one graphical object is gradually turned into another.
- Morphing can affect both the shape and attributes of the graphical objects.

Warping and Morphing: Slide 5

Warping and Morphing

- What is
- warping?
- morphing ?

Warping and Morphing: Slide 6

Morphing $=$ Object Averaging

- The aim is to find "an average" between two objects
- Not an average of two images of objects..
- ...but an image of the average object!
- How can we make a smooth transition in time?
- Do a "weighted average" over time t
- How do we know what the average object looks like?
- Need an algorithm to compute the average geometry and appearance

[^1]

Morphing using cross-dissolve

- Interpolate whole images:

$$
\text { Image }_{\text {halfway }}=t^{*} \operatorname{Image}_{1}+(1-t) * \text { image }_{2}
$$

- This is called cross-dissolve
- But what is the images are not aligned?

Warping and Morphing: Slide 10

Image warping

- image filtering: change range of image

- image warping: change domain of image

Image warping

- image filtering: change range of image

- image warping: change domain of image

- $g(x)=f(T(x))$

Parametric (global) warping

- Examples of parametric warps:

Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:

Scaling

- Non-uniform scaling: different scalars per component:

Warping and Morphing: Slide 17

Scaling

- Scaling operation:

$$
\begin{aligned}
& x^{\prime}=a x \\
& y^{\prime}=b y
\end{aligned}
$$

- Or, in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]}_{\text {scalina matrix }}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

What is the inverse of S ?
Warping and Mopphing: Slide 18

2-D Rotation

- This is easy to capture in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right.}_{\mathbf{R}}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Even though $\sin (\theta)$ and $\cos (\theta)$ are nonlinear functions of θ,
$-x^{\prime}$ is a linear combination of x and y
$-y^{\prime}$ is a linear combination of x and y
- What is the inverse transformation?
- Rotation by $-\theta$
- For rotation matrices, $\operatorname{det}(\mathrm{R})=1$ so $\mathbf{R}^{-1}=\mathbf{R}^{T}$

Warping and Morphing: Slide 21

2×2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Identity?

$\begin{aligned} x^{\prime} & =x \\ y^{\prime} & =y\end{aligned}$
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

2D Scale around (0,0)?

$$
\begin{aligned}
& x^{\prime}=s_{x} * x \\
& y^{\prime}=s_{y} * y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\text { Warping and Morphing: Slide } 22
$$

2×2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Mirror about Y axis?

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Mirror over (0,0)?

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=-y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Warping and Mopphing: Slide 24

2×2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Translation?
 $x^{\prime}=x+t_{x} \quad$ NO!
 $y^{\prime}=y+t_{y}$

Only linear 2D transformations can be represented with a 2×2 matrix

Warping and Morphing: Slide 25

Homogeneous Coordinates

- Q: How can we represent translation as a matrix transformation?

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

- A: Using the translation parameters as the rightmost column:

$$
\mathbf{T}=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Warping and Morphing: Slide 27

All 2D Linear Transformations

- Linear transformations are combinations of ...
- Scale,
- Rotation,
- Shear, and
- Mirror
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
- Properties of linear transformations:
- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Basic 2D Transformations

- Basic 2D transformations as 3×3 matrices

$$
\begin{array}{cc}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} & {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\boldsymbol{s}_{x} & 0 & 0 \\
0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]} \\
\text { Sranslate } \\
\text { Scale } \\
\text { Rotate }\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] & {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & s \boldsymbol{h}_{x} & 0 \\
\boldsymbol{s h}_{\boldsymbol{y}} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]} \\
\text { Shear }
\end{array}
$$

Warping and Morphing: Slide 28

2D image transformations

Warping and Morphing: Slide 29

Transformations in 3D: Rigid

- Rigid transformation (6 degrees of freedom)
$\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right)=\left(\begin{array}{cccc}r_{01} & r_{02} & r_{03} & t_{x} \\ r_{11} & r_{12} & r_{13} & t_{y} \\ r_{21} & r_{22} & r_{23} & t_{z} \\ 0 & 0 & 0 & 1\end{array}\right) \cdot\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right)=T_{\text {rigd }}^{x} \cdot T_{\text {rigid }}^{y} \cdot T_{\text {rigd }}^{z}\left(\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right)+\left(\begin{array}{c}t_{x} \\ t_{y} \\ t_{z} \\ 0\end{array}\right)$
- $\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}, \mathrm{t}_{\mathrm{z}}$ describe the 3 translations in x, y and z
- r_{11}, \ldots, r_{33} describe the 3 rotations around x, y, z Waping and Mopphing: Slide 31

Transformations

- Dimensions of transformation
- 1D: curves
- 2D: images
-3D: volumes
- Types of transformations
- rigid
- affine
- polynomial
- quadratic
- cubic
- splines

Warping and Mophing: Slide 30

Transformations in 3D: Rigid

$\mathbf{T}_{\text {rigd }}^{x}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \quad \mathbf{T}_{\text {rigid }}^{v}=\left(\begin{array}{cccc}\cos \alpha & 0 & \sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
$\mathbf{T}_{\text {rigid }}^{z}=\left(\begin{array}{cccc}\cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
Warping and Morphing: Slide 32

Transformations in 3D: Affine

- Affine transformations (12 degrees of freedom)

$$
\begin{gathered}
\mathbf{T}_{\text {scall }}=\left(\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{T}_{\text {shear }}^{x y}=\left(\begin{array}{cccc}
1 & 0 & s h_{x} & 0 \\
0 & 1 & s h_{y} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
\mathbf{T}(x, y, z)=\mathbf{T}_{\text {shear }} \cdot \mathbf{T}_{\text {scale }} \cdot \mathbf{T}_{\text {rigd }} \cdot\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)
\end{gathered}
$$

Warping and Morphing: Slide 33

Non-rigid transformations

- Quadratic transformation (30 degrees of freedom)

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{llll}
r_{00} & \cdots & r_{08} & r_{09} \\
r_{10} & \cdots & r_{18} & r_{19} \\
r_{20} & \cdots & r_{28} & r_{29} \\
0 & \cdots & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x^{2} \\
y^{2} \\
\vdots \\
1
\end{array}\right)
$$

Warping and Moophing: Slide 34

Non-rigid transformations

- Can be extended to other higher-order polynomials:
$-3^{\text {rd }}$ order (60 DOF)
$-4^{\text {th }}$ order (105 DOF)
$-5^{\text {th }}$ order (168 DOF)
- Problems:
- can model only global shape changes, not local shape changes
- higher order polynomials introduce artifacts such as oscillations

Image warping

$f(x, y)$

$g(x, y)$

- Given a coordinate transform $\left(x^{\prime}, y^{\prime}\right)=\mathrm{T}(x, y)$ and a source image $f(x, y)$, how do we compute a transformed image $g\left(x^{\prime}, y^{\prime}\right)=f(\mathrm{~T}(x, y))$?

Forward warping

- Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=\mathrm{T}(x, y)$ in the second image

Warping and Morphing: Slide 37

Forward warping

- Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=$ $\mathrm{T}(x, y)$ in the second image
Q: what if pixel lands "between" two pixels?

```
Warping and Mophing: Slide 38
```


Inverse warping

- Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=\mathrm{T}^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image second image
Q: what if pixel lands "between" two pixels?
A: distribute color among neighboring pixels ($\mathrm{x}^{\prime}, \mathrm{y}$ ') - known as "splatting"

Warping and Morphing: Slide 39

Inverse warping

- Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=\mathrm{T}^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image
Q : what if pixel comes from "between" two pixels?

Warping and Morphing: Slide 41

Inverse warping

- Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=\mathrm{T}^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image
Q: what if pixel comes from "between" two pixels?
A: Interpolate color value from neighbors - nearest neighbor, bilinear, Gaussian, bicubic

Warping and Morphing: Slide 42

Interpolation

Warping and Mopphing: Slide 44

Interpolation: Linear, 2D

$$
f(p)=\sum_{i=0}^{n-1} w_{i} f\left(p_{i}\right)
$$

Warping and Morphing: Slide 45

Interpolation: Linear, 3D

Non-rigid transformations: Correspondences

Warping and Mopphing: Slide 48

Non-rigid transformations: Correspondences

Waping and Mopphing: Slide 49

Feature-Based Warping: Beier-Neeley

$$
\begin{gathered}
u=\frac{(p-x) \cdot(y-x)}{\|y-x\|^{2}} \quad v=\frac{(p-x) \cdot \operatorname{Perpendicular}(y-x)}{\|y-x\|} \\
p^{\prime}=x+u \cdot\left(y^{\prime}-x^{\prime}\right)+\frac{v \cdot \operatorname{Perpendicular}\left(y^{\prime}-x^{\prime}\right)}{\left\|y^{\prime}-x^{\prime}\right\|}
\end{gathered}
$$

u is a fraction
Destination image v is a length (in pixels)

Warping and Morphing: Slide 51

Feature-Based Warping: Beier-Neeley

- Beier \& Neeley use pairs of lines to specify warp - Given \mathbf{p} in destination image, where is \mathbf{p} ' in source image?

u is a fraction v is a length (in pixels)

Warping and Mophhing: Slide 50

Feature-Based Warping: Beier-Neeley

- For each pixel p in the destination image
- find the corresponding u, v
- find the p^{\prime} in the source image for that u, v
$-\operatorname{destination}(p)=\operatorname{source}\left(p^{\prime}\right)$

Destination image v is a length (in pixels)

Warping and Morphing: Slide 52

Warping with One Line Pair: Beier-Neeley

- What happens to the "F"?

Translation!
Warping and Morphing: Slide 53

Warping with One Line Pair (cont.): Beier-Neeley

- What happens to the "F"?

Rotation!
Warping and Morphing: Slide 55

Warping with One Line Pair (cont.): Beier-Neeley

- What happens to the " F "?

Warping with One Line Pair (cont.): Beier-Neeley

- What happens to the "F"?

In general, similarity transformations
Warping and Mophing: side 56

Warping with Multiple Line Pairs: Beier-Neeley

- Use weighted combination of points defined each pair of corresponding lines

Warping and Morphing: Slide 57

Weighting Effect of Each Line Pair: Beier-Neeley

- To weight the contribution of each line pair
weight $[i]=\left(\frac{\text { length }[i]^{p}}{a+\operatorname{dist}[i]}\right)^{b}$
- where
- length[i] is the length of $\mathrm{L}[\mathrm{i}]$
- dist[i] is the distance from X to $\mathrm{L}[\mathrm{i}]$
$-\mathrm{a}, \mathrm{b}, \mathrm{p}$ are constants that control the warp

Warping and Morphing: Slide 59

Warping with Multiple Line Pairs: Beier-Neeley

- Use weighted combination of points defined by each pair corresponding lines

p^{\prime} is a weighted average
Warping and Morphing: Slide 58

Warping Pseudocode: Beier-Neeley

foreach destination pixel p do
psum $=(0,0)$
wsum $=(0,0)$
foreach line $\mathrm{L}[\mathrm{i}]$ in destination do
$p^{\prime}[i]=p$ transformed by (L[i], L'[i])
psum $=p s u m+p^{\prime}[i] *$ weight $[i]$
wsum $+=$ weight $[\mathrm{i}]$
end
p' = psum / wsum
destination $(\mathrm{p})=\operatorname{source}(\mathrm{p}$)
end

Warping and Morphing: Slide 60

Non-rigid transformation

- For each control point we have a displacement vector
- How do we interpolate the displacement at a pixel?

Warping and Morphing: Slide 63

Non-rigid transformation: Piecewise affine

- Partition the convex hull of the control points into a set of triangles

[^2]Non-rigid transformation: Piecewise affine

- Partition the convex hull of the control points into a set of triangles

Warping and Morphing: Slide 65

Non-rigid transformation: Piecewise affine

- Find triangle which contains point \mathbf{p} and express in terms of the vertices of the triangle:

$$
\mathbf{p}=\mathbf{x}_{1}+\alpha\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)+\beta\left(\mathbf{x}_{3}-\mathbf{x}_{1}\right)
$$

Warping and Morphing: Slide 66

Non-rigid transformation: Piecewise affine

- Or $\mathbf{p}=\gamma \mathbf{x}_{1}+\alpha \mathbf{x}_{2}+\beta \mathbf{x}_{3}$ with $\gamma=1-(\alpha+\beta)$
- Under the affine transformation this point simply maps to

$$
\mathbf{p}^{\prime}=\gamma \mathbf{x}_{1}{ }^{\prime}+\alpha \mathbf{x}_{2}{ }^{\prime}+\beta \mathbf{x}_{3}{ }^{\prime}
$$

Warping and Morphing: Slide 67

Non-rigid transformation: Piecewise affine

Warping and Morphing: Slide 68

Non-rigid transformation: Piecewise affine

- Problem: Produces continuous deformations, but the deformation may not be smooth. Straight lines can be kinked across boundaries between triangles

Warping and Mophing: Slide 69

An $O\left(\mathrm{n}^{3}\right)$ Triangulation Algorithm

- Repeat until impossible:
- Select two sites.
- If the edge connecting them does not intersect previous edges, keep it.

Warping and Morphing: Slide 71

Triangulations

- A triangulation of set of points in the plane is a partition of the convex hull to triangles whose vertices are the points, and do not contain other points.
- There are an exponential number of triangulations of a point set.

Warping and Mopphing: Slide 70

"Quality" Triangulations

- Let $\alpha(T)=\left(\alpha_{1}, \alpha_{2}, . ., \alpha_{3 t}\right)$ be the vector of angles in the triangulation T in increasing order.
- A triangulation T_{1} will be "better" than T_{2} if $\alpha\left(T_{1}\right)>\alpha\left(T_{2}\right)$ lexicographically
- The Delaunay triangulation is the "best"
- Maximizes smallest angles

bad

Representing deformations

Before deformation

After deformation
Warping and Morphing: Slide 73

B-splines

- Free-Form Deformation (FFD) are a common technique in Computer Graphics for modelling 3D deformable objects
- FFDs are defined by a mesh of control points with uniform spacing
- FFDs deform an underlying object by manipulating a mesh of control points
- control point can be displaced from their original location
- control points provide a parameterization of the transformation

[^3]
Representing deformations

Displacement in the horizontal direction

Displacement in the vertical direction
Warping and Morphing: Slide 74

FFDs using linear B-splines

- FFDs based on linear B-splines can be expressed as a 2D (3D) tensor product of linear 1D B-splines:

$$
\mathbf{u}(x, y)=\sum_{==0}^{1} \sum_{m=0}^{1} B_{l}(u) B_{m}(v) \phi_{i+l, j+m}
$$

where

$$
i=\left\lfloor\frac{x}{\delta_{x}}\right\rfloor, j=\left\lfloor\frac{y}{\delta_{y}}\right\rfloor, u=\frac{x}{\delta_{x}}-\left\lfloor\frac{x}{\delta_{x}}\right\rfloor, v=\frac{y}{\delta_{y}}-\left\lfloor\frac{y}{\delta_{y}}\right\rfloor
$$

and B_{i} corresponds to the B -spline basis functions

$$
\begin{aligned}
& B_{0}(s)=1-s \\
& B_{1}(s)=s
\end{aligned}
$$

Warping and Mopphing: Slide 76

FFDs using cubic B-splines

- FFDs based on cubic B-splines can be expressed as a 2D (3D) tensor product of cubic 1D B-splines:

$$
\mathbf{u}(x, y)=\sum_{l=0}^{3} \sum_{m=0}^{3} B_{l}(u) B_{m}(v) \phi_{i+l, j+m}
$$

where
$i=\left\lfloor\frac{x}{\delta_{x}}\right\rfloor-1, j=\left\lfloor\frac{y}{\delta_{y}}\right\rfloor-1, u=\frac{x}{\delta_{x}}-\left\lfloor\frac{x}{\delta_{x}}\right\rfloor, v=\frac{y}{\delta_{y}}-\left\lfloor\frac{y}{\delta_{y}}\right\rfloor$
and B_{i} corresponds to the B -spline basis functions

$$
B_{0}(s)=(1-s)^{3} / 6 \quad B_{2}(s)=\left(-3 s^{3}+3 s^{2}+3 s+1\right) /
$$

FFDs: Example

- Image
- width 25 pixels
- height 20 pixels
- Free-form deformation
-6×6 mesh of control points
- linear B-splines
- Calculate new position of pixel
$-\mathrm{x}=12$
$-y=11$

$$
B_{1}(s)=\left(3 s^{3}-6 s^{2}+4\right) / 6 \quad B_{3}(s)=s^{3} / 6
$$

$$
\text { Warping and Morphing: Slide } 77
$$

FFDs: 2D Example

Wapping and Morphing: Slide 79

FFDs: 2D Example

0,0

25,20
Warping and Moplhing: Slide 80

FFDs: 2D Example
$\delta_{x}=5$

FFDs: 2D Example

- Calculate integer lattice coordinates i, j :

$$
i=\left\lfloor\frac{12}{5}\right\rfloor=2 \quad j=\left\lfloor\frac{11}{4}\right\rfloor=2
$$

- Calculate fractional lattice coordinates u, v :

$$
\begin{gathered}
u=\frac{12}{5}-\left[\frac{12}{5}\right]=0.4 \quad v=\frac{11}{4}-\left[\frac{11}{4}\right]=0.75 \\
\mathbf{u}(x, y)=\sum_{=0}^{1} \sum_{m=0}^{1} B_{l}(u) B_{m}(v) \phi_{2+l, 2+m}
\end{gathered}
$$

Warping and Morphing: Slide 85

FFDs: 2D Example

$\mathbf{u}(x, y)=B_{0}(0.4) B_{0}(0.75) \phi_{2,2}+$
$+B_{0}(0.4) B_{1}(0.75) \phi_{2,3}+$
$+B_{1}(0.4) B_{0}(0.75) \phi_{3.2}+$
$+B_{1}(0.4) B_{1}(0.75) \phi_{3,3}$
$\mathbf{u}(x, y)=0.15 \cdot\binom{5}{8}+0.45 \cdot\binom{2}{-2}+$
$+0.10 \cdot\binom{3}{7}+0.3 \cdot\binom{3}{-1}=\binom{2.34}{0.7}$

Warping and Morphing: Slide 87

FFDs

- Used for warping:
- Lee et al. (1997)
- Advantages:
- Control points have local influence since the basis function has finite support
- Fast
- linear (in 3D: $2 \times 2 \times 2=8$ operations per warp)
- cubic (in 3D: $4 \times 4 \times 4=64$ operations per warp)
- Disadvantages:
- Control points must have uniform spatial distribution

Warping and Mopphing: Slide 90


```
Morphing
GenerateAnimation(Image (, Image }\mp@subsup{}{1}{}\mathrm{ )
begin
    foreach intermediate frame time t do
        Warp
        Warp
        foreach pixel p in FinalImage do
        Result(p)=(1-t) Warp
        end
    end
end
Warping and Morphing: Slide 93
```


Image Combination

- Determines how to combine attributes associated with geometrical primitives. Attributes may include
- color
- texture coordinates
- normals
- Blending
- cross-dissolve
- adaptive cross-dissolve
- alpha-channel blending
- z-buffer blending

```
Warping and Mophing: Slide 94
```


Image Combination: Cross-dissolve

- Blending with cross-dissolve:

$$
I=(1-t) \cdot I_{A}+t \cdot I_{B}
$$

- intensities
- RGB space
- HSV space
- texture space

Warping and Morphing: Slide 95

Image Combination: Adaptive cross-dissolve

- Adaptive cross-dissolve

$$
I=(1-w(\mathbf{p}, \lambda)) \cdot I_{A}(\mathbf{p})+w(\mathbf{p}, \lambda) \cdot I_{B}(\mathbf{p})
$$

- similar to cross-dissolve but blending function depends on position in image

Warping and Morphing: Slide 97

Image Combination: Alpha channel blending

- Convention:
- RGBA represents a pixel with color C:

$$
C=(R / \alpha, G / \alpha, B / \alpha)^{\prime}
$$

- What is meaning of:

$$
\begin{array}{ll}
(0,1,0,1) & \text { Full green, full opacity } \\
(0,1,0,0.5) & \text { Full green, semi-transparent } \\
(0,0.5,0,1) & \text { Half green, full opacity } \\
(1,1,1,0) & \text { White, transparent }
\end{array}
$$

Warping and Morphing: Slide 99

Image Combination: Alpha channel blending

- Blending using RGBA images

$$
I=w_{a} \cdot I_{A}+w_{b} \cdot I_{B}
$$

- Images are represented by quadruples:
$-R, G, B$ indicating color
- Alpha channel encodes pixel coverage information
$-\alpha=0$
transparent
$-0<\alpha<1 \quad$ semi-transparent
$-\alpha=1$
opaque

Warping and Mopphing: Slide 98

Image Combination: Alpha channel blending

Operation	w_{a}	w_{b}
A	1	0
B	0	1
A over B	1	$1-\alpha_{a}$
A in B	α_{b}	$0-\alpha_{a}$
A out B	$1-\alpha_{b}$	0
A plus A	1	1

Warping and Morphing: Slide 100

Image Combination: Z-buffer blending

- Blending using Z-buffer values:

$$
I=\left\{\begin{array}{cc}
I_{a} & \text { if } z_{a}<z_{b} \\
I_{b} & \text { else }
\end{array}\right.
$$

defines an ordering

- can be used for layering

[^0]: Warping and Morphing: Slide 4

[^1]: Warping and Morphing: Slide \&

[^2]: Warping and Mophhing: Slide 64

[^3]: Warping and Morphing: Slide 75

