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Interactive Computer Graphics

• Lecture 15+16: Warping and Morphing
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Warping and morphing
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Warping and Morphing

• What is
– warping ?
– morphing ?

?
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Warping

• The term warping refers to the geometric
transformation of graphical objects (images, surfaces
or volumes) from one coordinate system to another
coordinate system.

• Warping does not affect the attributes of the
underlying graphical objects.

• Attributes may be
– color (RGB, HSV)
– texture maps and coordinates
– normals, etc.
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Morphing

• The term morphing stands for metamorphosing and
refers to an animation technique in which one
graphical object is gradually turned into another.

• Morphing can affect both the shape and attributes of
the graphical objects.
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Warping and Morphing

• What is
– warping ?
– morphing ?
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Warping and Morphing

• What is
– warping ?
– morphing ?
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Morphing = Object Averaging

• The aim is to find “an average” between two
objects
– Not an average of two images of objects…
– …but an image of the average object!
– How can we make a smooth transition in time?

– Do a “weighted average” over time t
• How do we know what the average object looks

like?
– Need an algorithm to compute the average geometry

and appearance
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Averaging

P

Q
v = Q - P

P + 0.5v
=  P + 0.5(Q – P)
=  0.5P + 0.5 Q

P + 1.5v
=  P + 1.5(Q – P)
=  -0.5P + 1.5 Q
(extrapolation)

Linear Interpolation
(Affine Combination):
New point aP + bQ,
defined only when a+b = 1
So aP+bQ = aP+(1-a)Q

What’s the average
of P and Q?
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Morphing using cross-dissolve

• Interpolate whole images:
Imagehalfway = t*Image1 + (1-t)*image2

• This is called cross-dissolve
• But what is the images are not aligned?

Warping and Morphing:  Slide 11

Morphing using warping and cross-dissolve

• Align first, then cross-dissolve
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Image warping

• image filtering: change range of image
• g(x) = T(f(x))

f

x

T
f

x

f
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T
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• image warping: change domain of image
• g(x) = f(T(x))
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Image warping

T

T

f

f g

g

• image filtering: change range of image
• g(x) = h(T(x))

• image warping: change domain of image
• g(x) = f(T(x))
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Parametric (global) warping

• Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical
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Parametric (global) warping

• Transformation T can be expressed as a mapping:
p’ = T(p)

• Transformation T can be expressed as a matrix:
p’ = M*p

T

p = (x,y) p’ = (x’,y’)
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Scaling

• Scaling a coordinate means multiplying each of its components
by a scalar

• Uniform scaling means this scalar is the same for all
components:

× 2
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• Non-uniform scaling: different scalars per component:

Scaling

X × 2,
Y × 0.5
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scaling matrix S
What is the inverse of S?

Scaling

• Scaling operation:

• Or, in matrix form:
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2-D Rotation

θ

(x, y)

(x’, y’)

x’ = x cos(θ) - y sin(θ)
y’ = x sin(θ) + y cos(θ)
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2-D Rotation

x = r cos (φ)
y = r sin (φ)
x’ = r cos (φ + θ)
y’ = r sin (φ + θ)

Trig Identity…
x’ = r cos(φ) cos(θ) – r sin(φ) sin(θ)
y’ = r sin(φ) sin(θ) + r cos(φ) cos(θ)

Substitute…
x’ = x cos(θ) - y sin(θ)
y’ = x sin(θ) + y cos(θ)

θ

(x, y)

(x’, y’)

φ
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2-D Rotation

• This is easy to capture in matrix form:

• Even though sin(θ) and cos(θ) are nonlinear functions of θ,
– x’ is a linear combination of x and y
– y’ is a linear combination of x and y

• What is the inverse transformation?
– Rotation by –θ
– For rotation matrices, det(R) = 1 so
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2x2 Matrices

• What types of transformations can be
represented with a 2x2 matrix?

2D Identity?
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2D Scale around (0,0)?
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2x2 Matrices

• What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?
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2D Shear?
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2x2 Matrices

• What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?
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2D Mirror over (0,0)?
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2x2 Matrices

• What types of transformations can be
represented with a 2x2 matrix?

2D Translation?

y
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Only linear 2D transformations
can be represented with a 2x2 matrix

NO!
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All 2D Linear Transformations

• Linear transformations are combinations of …
– Scale,
– Rotation,
– Shear, and
– Mirror

• Properties of linear transformations:
– Origin maps to origin
– Lines map to lines
– Parallel lines remain parallel
– Ratios are preserved
– Closed under composition
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Homogeneous Coordinates

• Q: How can we represent translation as a matrix
transformation?

• A: Using the translation parameters as the rightmost
column:
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T =

1 0 tx

0 1 ty

0 0 1
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Basic 2D Transformations

• Basic 2D transformations as 3x3 matrices
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2D image transformations
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Transformations

• Dimensions of transformation
– 1D: curves
– 2D: images
– 3D: volumes

• Types of transformations
– rigid
– affine
– polynomial

– quadratic
– cubic

– splines
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Transformations in 3D: Rigid

• Rigid transformation (6 degrees of freedom)

• tx, ty, tz describe the 3 translations in x, y and z
• r11, ..., r33 describe the 3 rotations around x, y, z
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Transformations in 3D: Rigid
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Transformations in 3D: Affine

• Affine transformations (12 degrees of freedom)
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Non-rigid transformations

• Quadratic transformation (30 degrees of freedom)
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Non-rigid transformations

• Can be extended to other higher-order polynomials:
– 3rd order (60 DOF)
– 4th order (105 DOF)
– 5th order (168 DOF)

• Problems:
– can model only global shape changes, not local shape

changes
– higher order polynomials introduce artifacts such as

oscillations
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Image warping

• Given a coordinate transform (x’,y’) = T(x,y) and a
source image f(x,y), how do we compute a
transformed image g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’
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f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding location
(x’,y’) = T(x,y) in the second image

x x’

T(x,y)
y y’
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f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding location (x’,y’) =
T(x,y) in the second image
Q:  what if pixel lands “between” two pixels?

x x’

T(x,y)
y y’
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f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding location (x’,y’) = T(x,y) in the
second image
Q:  what if pixel lands “between” two pixels?
A:  distribute color among neighboring pixels (x’,y’)

– known as “splatting”

x x’

T(x,y)
y y’
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f(x,y) g(x’,y’)x
y

Inverse warping

• Get each pixel g(x’,y’) from its corresponding
location (x,y) = T-1(x’,y’) in the first image

x x’
y’

T-1(x,y)
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f(x,y) g(x’,y’)x
y

Inverse warping

• Get each pixel g(x’,y’) from its corresponding location
(x,y) = T-1(x’,y’) in the first image
Q:  what if pixel comes from “between” two pixels?

x x’

T-1(x,y)
y’
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f(x,y) g(x’,y’)x
y

Inverse warping

• Get each pixel g(x’,y’) from its corresponding location
(x,y) = T-1(x’,y’) in the first image
Q:  what if pixel comes from “between” two pixels?
A:  Interpolate color value from neighbors

– nearest neighbor, bilinear, Gaussian, bicubic

x x’

T-1(x,y)
y’

Warping and Morphing:  Slide 43

Interpolation
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Interpolation
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Interpolation: Linear, 2D

p0

p2 p3

p1

y

x
r

s
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Interpolation: Linear, 3D

z
y

p5

p2 p3

p7

p4

p0 p1

p6

s

t

r

x
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Non-rigid transformations
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Non-rigid transformations: Correspondences
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Non-rigid transformations: Correspondences

y

x
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Feature-Based Warping: Beier-Neeley

• Beier & Neeley use pairs of lines to specify warp
– Given p in destination image, where is p’ in source image?

y’

x’

y

x
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Feature-Based Warping: Beier-Neeley

! 

u =
(p " x) # (y " x)

y " x
2

! 

v =
(p " x) # Perpendicular(y " x)

y " x

! 

p'= x + u " (y'#x') +
v " Perpendicular(y '#x ')

y'#x'

y’

x’

y

x
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y’

x’

y

x

Feature-Based Warping: Beier-Neeley

• For each pixel p in the destination image
– find the corresponding u,v
– find the p’ in the source image for that u,v
– destination(p) = source(p’)
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Warping with One Line Pair: Beier-Neeley

• What happens to the “F” ?

Translation !
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Warping with One Line Pair (cont.): Beier-Neeley

• What happens to the “F” ?

Scale !
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Warping with One Line Pair (cont.): Beier-Neeley

• What happens to the “F” ?

Rotation !
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Warping with One Line Pair (cont.): Beier-Neeley

• What happens to the “F” ?

In general, similarity transformations
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Warping with Multiple Line Pairs: Beier-Neeley

• Use weighted combination of points defined each pair
of corresponding lines
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Warping with Multiple Line Pairs: Beier-Neeley

• Use weighted combination of points defined by each
pair corresponding lines

p’ is a weighted average
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Weighting Effect of Each Line Pair: Beier-Neeley

• To weight the contribution of each line pair

– where
– length[i] is the length of L[i]
– dist[i] is the distance from X to L[i]
– a, b, p are constants that control the warp

b
p

idista

ilength
iweight !!
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Warping Pseudocode: Beier-Neeley

foreach destination pixel p do
psum = (0, 0)
wsum = (0, 0)
foreach line L[i] in destination do

     p’[i] = p transformed by (L[i], L’[i])
     psum = psum + p’[i] * weight[i]
     wsum += weight[i]
  end
    p’ = psum / wsum
    destination(p) = source(p’)
end
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Non-rigid transformation

Control points

Point to be warped
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Non-rigid transformation

• For each control point we have a displacement vector
• How do we interpolate the displacement at a pixel?

?
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Non-rigid transformation: Piecewise affine

• Partition the convex hull of the control points into a
set of triangles
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Non-rigid transformation: Piecewise affine

• Partition the convex hull of the control points into a
set of triangles
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Non-rigid transformation: Piecewise affine

• Find triangle which contains point p and express in
terms of the vertices of the triangle:

x1

x3

x2

)()( 13121 xxxxxp !+!+= "#
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Non-rigid transformation: Piecewise affine

• Or                                       with

• Under the affine transformation this point simply
maps to

321
xxxp !"# ++= )(1 !"# +$=

''''
321
xxxp !"# ++=
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Non-rigid transformation: Piecewise affine
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Non-rigid transformation: Piecewise affine

• Problem: Produces continuous deformations, but the
deformation may not be smooth. Straight lines can be
kinked across boundaries between triangles
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Triangulations

• A triangulation of set of points in the plane is a partition of the
convex hull to triangles whose vertices are the points, and do
not contain other points.

• There are an exponential number of triangulations of a point
set.
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An O(n3) Triangulation Algorithm

• Repeat until impossible:
– Select two sites.
– If the edge connecting them does not intersect previous

edges, keep it.
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“Quality” Triangulations

• Let α(T) = (α1, α2 ,.., α3t) be the vector of angles in the
triangulation T in increasing order.

• A triangulation T1 will be “better” than T2 if α(T1) > α(T2)
lexicographically.

• The Delaunay triangulation is the “best”
– Maximizes smallest angles

good bad
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Representing deformations

Before deformation After deformation
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Representing deformations

Displacement in the
horizontal direction

Displacement in the
vertical direction
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B-splines

• Free-Form Deformation (FFD) are a common
technique in Computer Graphics for modelling 3D
deformable objects

• FFDs are defined by a  mesh of control points with
uniform spacing

• FFDs deform an underlying object by manipulating a
mesh of control points

– control point can be displaced from their original location
– control points provide a parameterization of the

transformation
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FFDs using linear B-splines

• FFDs based on linear B-splines can be expressed as a
2D (3D) tensor product of linear 1D B-splines:

where

and Bi corresponds to the B-spline basis functions
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FFDs using cubic B-splines

• FFDs based on cubic B-splines can be expressed as a
2D (3D) tensor product of cubic 1D B-splines:

where

and Bi corresponds to the B-spline basis functions
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FFDs: Example

• Image
– width 25 pixels
– height 20 pixels

• Free-form deformation
– 6 x 6 mesh of control points
– linear B-splines

• Calculate new position of pixel
– x = 12
– y = 11
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FFDs: 2D Example

Warping and Morphing:  Slide 80

FFDs: 2D Example
0,0

25,20
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FFDs: 2D Example

Warping and Morphing:  Slide 82

FFDs: 2D Example
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FFDs: 2D Example
0,0 0,0 1,0 0,3 1,1 2,3

3,2 3,2 -7,2 3,1 2,-9 -3,1

1,3 1,0 5,8 3,7 0,0 2,0

4,3 2,1 2,-2 3,-1 1,7 0,-3

0,0 -1,-1 1,3 3,2 3,4 2,8

0,0 -2,-2 1,4 1,2 0,0 2,1
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FFDs: 2D Example
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FFDs: 2D Example

• Calculate integer lattice coordinates i, j:

• Calculate fractional lattice coordinates u,v:
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FFDs: 2D Example
0,0 0,0 1,0 0,3 1,1 2,3

3,2 3,2 -7,2 3,1 2,-9 -3,1

1,3 1,0 5,8 3,7 0,0 2,0

4,3 2,1 2,-2 3,-1 1,7 0,-3

0,0 -1,-1 1,3 3,2 3,4 2,8

0,0 -2,-2 1,4 1,2 0,0 2,1
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FFDs: 2D Example

Warping and Morphing:  Slide 88

FFDs in 3D

source

target
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FFDs in 3D
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FFDs

• Used for warping:
– Lee et al. (1997)

• Advantages:
– Control points have local influence since the basis function

has finite support
– Fast

– linear (in 3D: 2 x 2 x 2 = 8 operations per warp)
– cubic (in 3D: 4 x 4 x 4 = 64 operations per warp)

• Disadvantages:
– Control points must have uniform spatial distribution
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Morphing = (warping)2 + blending

Blending

Forward
warping

Backward
warping
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Morphing = (warping)2 + blending



24

Warping and Morphing:  Slide 93

Morphing

GenerateAnimation(Image0, Image1)
begin
  foreach intermediate frame time t do
    Warp0 = WarpImage(Image0, t)
    Warp1 = WarpImage(Image1, t)
    foreach pixel p in FinalImage do
      Result(p) = (1-t)Warp0 + tWarp1

 end
end

end
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Image Combination

• Determines how to combine attributes associated with
geometrical primitives. Attributes may include

– color
– texture coordinates
– normals

• Blending
– cross-dissolve
– adaptive cross-dissolve
– alpha-channel blending
– z-buffer blending
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Image Combination: Cross-dissolve

• Blending with cross-dissolve:

– intensities
– RGB space
– HSV space
– texture space

BA
ItItI !+!"= )1(
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Image Combination: Cross-dissolve

RGB Texture
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Image Combination: Adaptive cross-dissolve

• Adaptive cross-dissolve

– similar to cross-dissolve but blending function depends on
position in image

)(),()()),(1( pppp
BA
IwIwI !+!"= ##
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Image Combination: Alpha channel blending

• Blending using RGBA images

• Images are represented by quadruples:
– R, G, B indicating color
– Alpha channel encodes pixel coverage information

– α = 0 transparent
– 0 < α < 1 semi-transparent
– α = 1 opaque

BbAa
IwIwI !+!=
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Image Combination: Alpha channel blending

• Convention:
– RGBA represents a pixel with color C:

– What is meaning of:
(0, 1, 0, 1) Full green, full opacity
(0, 1, 0, 0.5) Full green, semi-transparent
(0, 0.5, 0, 1) Half green, full opacity
(1, 1, 1, 0) White, transparent

( )
!!!
BGRC ,,=

Warping and Morphing:  Slide 100

Image Combination: Alpha channel blending

11 plus 

01out  

0in  

11over  

10

01

Operation

AA
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Image Combination: Z-buffer blending

• Blending using Z-buffer values:

– defines an ordering
– can be used for layering
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