
317 – Computer Graphics

Coursework: Rendering using OpenGL

February 4, 2009

Important

The Computer Graphics coursework MUST be submitted electronically via the
CATE system. You can do the coursework in groups of up to three students.
For the deadline of the coursework see CATE.

Coursework

This section describes the main aim of this coursework task. Before you start
the task, however, make sure you have read and understood the sections on the
environment and data formats at the end of this document.

This coursework exercise is a practical programming exercise which should be
done using OpenGL. The goal of the coursework is to produce a realistic looking
3D rendering of a face.

You can dowload all necessary files for the coursework from:

http://www.doc.ic.ac.uk/~dfg/graphics/graphics.html

• This coursework description.

• A skeleton program in the form of a pair of source files (.cpp and .h).

• A Makefile for building the program in a Linux environment.

• A data file containing the surface model of the fac i.e. the geometric and
texture coordinates and the polygon information needed to render it. This
file is in VTK format, see below.

• An data file containing the texture information that can be used to pro-
duce a realistic rendering of the face. This file is an image in PPM format,
see below.

1

You will need to add your own code in order to generate the renderings required.
You can add new classes as part of an object oriented approach if you like. You
will need to amend the Makefile if you decide to use additional header and/or
source files.

When you have completed your code, you will need to submit the following
items in a tar/zip file:

1. Three different renderings of the face using Gouraud shading.

2. One rendering that uses texture mapping.

3. The source code that you used to produce the renderings.

The Gouraud renderings in 1 should use different view points and lighting con-
ditions. One of these renderings should have a view point and lighting which
is as similar as possible to the rendering shown on the left in Figure 1. For
further details about the texture map and texture coordinates in the data files,
see below.

Figure 1: Example renderings of the data used in this coursework exercise. Left:
Gouraud shading. Right: Texture mapping.

Environment

The programming environment for the exercises is OpenGL on the Linux/X11
machines of the department. OpenGL should be installed on all Linux/X11
machines. You may use a Windows machine but we recommend that you use
the Linux environment. You can program either in C or C++.

2

In order to view ppm format image files on the Lab Linux machines ‘Eye Of
Gnome’ can be used, it can be run by typing eog at the command line. Taking
screenshots can be done in a variety of ways. For example the Gnu Image
Manipulation Program (gimp) can be used. After starting gimp, go to File →
Create (or Acquire) to obtain a screenshot.

The provided skeleton program

The skeleton OpenGL program (for Linux) that is provided for you is contained
in the following files:

• cgRender.h

• cgRender.cpp

• Makefile

To set the program up, create a new directory and copy all three files into it. To
compile the program, go to the new directory and type make at the command
line. This should compile the sample program for you.

To run the sample program, type ./cgRender at the command line. The skele-
ton OpenGL program should create an empty window for you. Take a good look
at the skeleton program. It contains a number of hints on how to use OpenGL
to start solving the coursework. If you have questions about the coursework
come to the tutorials!

Data

The data provided consists of two files, one contains the surface model and the
other contains the texture data.

Surface model file

The surface model of the face is stored in the vtk format file face.vtk provided.
This surface model consists of three components: Vertex coordinates, polygon
data and texture coordinates.

You can assume that the surface model contains only simple and planar poly-
gons. In addition, you can assume that the surface model is consistent, i.e. the
ordering of vertices of the polygons is always the same.

3

The surface model file consists of the following four parts:

1. Header

The header contains the following lines:

vtk DataFile Version 3.0
Somebody’s face
ASCII
DATASET POLYDATA

2. Vertex data

The first line contains the key word POINTS to indicate the start of
the vertex data. The next number equals the number of vertices of
the surface model, followed by the type of each vertex (you can assume
that this always corresponds to float). After this follow the x, y and z
world-coordinates for each vertex as floating point numbers.

3. Polygon data

The first line contains the key word POLYGONS to indicate the start
of the polygon data, followed by the number of polygons and the size
of the cell list for all polygons. Each of the following lines contains the
number of vertices forming the polygon, followed by the indices of the
vertices which form the polygon. The indices of the vertices correspond
to the order in which they are listed in the vertex data (see above).

4. Texture data

The first line contains the keyword POINT DATA, followed by the num-
ber of points with texture coordinates. The next line contains the key
word TEXTURE COORDINATES to indicate the start of the texture
data and some miscellaneous information. After that the x and y tex-
ture coordinates for each vertex as floating point numbers. The order
of the texture coordinates is the same as the order of the vertices

Texture file

The provided ppm format image file face.ppm contains the 512 × 512 texture
map of the face. The texture map is represented as a PPM format files with
a short ASCII header followed by the R (red), G (green) and B (blue) com-
ponents for each pixel as a separate unsigned byte. To find out more about

4

the typical header of a PPM file, type man ppm at the command line or see
http://netpbm.sourceforge.net/doc/ppm.html.

5

