
Lecture 7: Colour

The physical description of colour

Colour vision is a very complicated biological and psychological phenomenon. It can be described in many
different ways, including by physics, by subjective observation, or by the tri-stimulus representation commonly
used in computers. As we noted previously, light has a wavelength (λ), which can be measured accurately,
and an energy or intensity. Lasers produce light of one particular wavelength, but generally visible light is a
distribution of energy into a band of wavelengths. Figure 1(a) shows a distribution of light energy which we
would perceive as red in colour, and figure 1(b) shows the the distribution of energy found in sunlight, which
we perceive as light yellow. The wavelength range of the visible spectrum is approximately from 400 to 700
nano-meters.

(a) Red light (b) Sunlight

Figure 1: Energy Distributions for light

In the eye we have just three distinct ’cone’ cells for detecting light energy. These respond to a band of
wavelength centred around red (600), green (560) and blue (440); respectively. The bands overlap, so, for
example green light excites all three types. Typical responses of the cone cells are shown in figure 2 The con-
sequence of this is that each type of cell may be excited similarly from very different energy distributions. Any
distribution of wavelengths will be perceived by us as a single colour, but two entirely different distributions of
intensities could be perceived as the same colour.

Subjective observation of colour

Figure 2: Typical responses of individual
cone cells

Two colours are said to be equivalent when an observer says
that they are equivalent. Selecting three pure light sources (R,
G, B) and mixing them together while varying their respec-
tive intensities, one may be able to create a large number of
colours. Each colour satisfies the following linear combination:
X = r+ g+ b where r, g, b are the intensities of the red, green
and blue light sources in the mix. One way to approach colour
definition is through a matching experiment. For an unknown
colour we can compare it to a mixture X , and adjust r, g and
b until the mixture matches the unknown colour. As we shall
see later, not all colours can be matched in this way. However,
by adding one of the pure colours to an unknown, unmatchable
colour, we can make a match. This is in effect subtracting a
colour from the mix.

X + r = g + b
or X + g = r + b
or X + b = r + g

The representation of colours as a mixture of three components is called the tri-stimulus representation, and is

Interactive Computer Graphics Lecture 7 1

very commonly used in monitors and other active colour devices. The pure colours used are red green and blue,
and are referred to as the additive primary colours.

The Standard Additive Linear System (CIE)

Matching allows us to determine an rgb representation of any colour, even though the scales include negative
numbers. The scales used depend on the wavelengths of the sources for matching and are not standard. In order
to create a manageable standard system, a committee of scientists devised the CIE Chromaticity Diagram, in
which colours are specified by a linear combination of three light sources normalised to the positive range [0..1]
to avoid any negative values. The three principle colours would normally require a three dimensional diagram,
but by using further normalisation a two dimensional diagram is produced. Suppose a colour is defined, as
above, by: C = r+ g+ b. If we divide each component of this equation with (r+ g+ b) and get a normalised
set of coordinates:

x = r/(r + g + b) the normalised red component,
y = g/(r + g + b) the normalised green component,
z = b/(r + g + b) the normalised blue component,

and x+ y + z = 1
So, knowing two of the three normalised colour components (x, y) the third one can be determined, for example
z = 1− x− y.

(a) Standard Oberver response (b) Normalised space for colour defi-
nition

(c) The CIE Diagram

Figure 3: Defining the CIE Diagram

The process by which the CIE diagram was defined is illustrated in in figure 3. First a standard observer
response was defined. This takes into account not only the typical responses of the three types of cone cell,
shown in figure 2, but also the density of the cells in the foveal region of the eye. This standard response is
shown in figure 3(a) and represents the typical overall cone cell responses to the light arriving in a small solid
angel at the eye. Any wavelength in figure 3(a) can now be associated with a tri-stimulus value defined by
the relative magnitudes of the responses of the three types of cell. For example at the wavelength 580 we can
read off the graph that blue is zero and red and greeen are approximately equal at 0.8. The three values are
normlised so that they sum to 1 and plotted in a normalised cartesian space which is illustrated by figure 3(b).
The resulting wavelengths plotted in this space are shown on the CIE diagram of figure 3(c). All visible colours
can be defined in this way, though only their normalised values are shown on colour prints of the diagram.

The pure visible colours are distributed on the edge of the horseshoe shaped curve with their physical
wavelength running from 380 to 780 nm. At top and bottom ends of the visible spectrum, where the cell
responses fall off, the wavelengths converge very fast towards a vanishing point. For example the wavelength
700 nm is virtually coincident with the 780 nm point in figure 3(c). We can see that just below 500 nm the red
component is zero and the blue and green are approximately equal which would correspond to the colour cyan.
The straight line from 780 to 540 on the right hand side represents the condition that x + y = 1 which means
that the blue component is zero. The straight line at the bottom, joining 380 to 780 is a combination of red and
blue, which has no equivalent single wavelength colour. It is called the magenta line. All visible colours are

Interactive Computer Graphics Lecture 7 2

contained within the horseshoe, which must be convex, since all colours are a mixture of pure wavelengths. The
usefulness of this diagram is that it expresses a linear additive system and the addition of colour components
can be done graphically.

Graphical Manipulation of Colour Parameters

Figure 4: Calculations on the CIE Diagram

Some definitions are shown on the CIE diagram of figure 4.
The white point, x = y = z = 1/3, has equal strength of all
three basic components. Pure colours, around the edge of the
horseshoe, are called pure or fully saturated colours. If we take
a pure colour, say 488 nm on the diagram, the line connecting
this point and the white point contains all the possible colours
which can be achieved by adding white to this pure colour. If
we extend this line and on the other side it hits the curve at
another pure colour point (598 nm in this case), which is called
the complement because mixing the two makes white.

Saturation, or the degree of purity, of a given colour point
can also be determined graphically. The white point is com-
pletely unsaturated (has no colour). The ratio of distances be-
tween the colour and the white point and the pure colour and
the white point gives us saturation:

saturation =
|W − U |
|W − P |

The saturation is always taken as 1 on the horseshoe (fully saturated) and zero at the white point. If we take
any colour on the diagram, for example [0.2, 0.3, 0.5] shown in figure 4, we can measure this ratio, which in
this case is approximately equal to 0.4. This tells us the white content of the point. We can also determine a
pure colour by considering the line through the point and the white point. From the slope of the line we can
calculate that it cuts the y axis at [0, 0.25, 0.75]. This point is not in the visible region of the CIE diagram. The
nearest pure colour will be seen to be around [0.04, .26, .736]. The complement of this colour can be found by
determining the colour which when added to it will produce white. This will be on the z=0 line, so the blue
component is zero, and so we have that [0.04, .26, 0.736] + [r,g,0] = [k,k,k] from the blue component we can
find that k = .736, whence 0.04 + r = 0.736, so r = 0.696 and g = 0.476. If we normalise these points we get
[0.6, 0.4, 0.0] as shown on the diagram. Notice that the normalisation on the diagram gives a weighting to the
colour coordinates. Since on the diagram the line joining a colour and its complement always goes through the
white point, it is always possible to find a linear combination of the two that produces white. It does not mean
that adding the co-ordinates and normalising produces white.

Subtractive Colour representation

Figure 5: The Primary
Colours

Paints and printing ink absorb colour reflecting only part of the incident light. For
this reason they are called subtractive primaries The three principal colours of paints
are magenta (purple), cyan (pale blue) and yellow. These three can be created by
combining the additive colour primaries. Magenta is red and blue, cyan is blue and
green, and yellow is red and green. Black is created by a blend of the three subtractive
primaries, but is usually also used in colour printing for convenience. It reflects none
of the incident light. White paint (or paper) reflects all the incident light and so does
not change its colour. Black and white paints can be blended to produce different
shades of grey. With grey and red paint you may make brown, and a milliard other
colours which have no equivalents in the preceding systems. Paints are much richer
than colours produced by red/green/blue lights.

Figure 5 indicates how the different, pure basic colours are generated by the ad-
ditive (monitor) and subtractive (printer) colour systems. Each circle represents one
basic additive (R,G,B), or subtractive (M,C,Y) colour. The other regions indicate pure

Interactive Computer Graphics Lecture 7 3

colours generated by two basic colour addition or subtraction, respectively. The centre colour (three addition or
subtraction) in the additive system is white, while it is black in the subtractive system (all colours are absorbed).
The two systems show additive or subtractive complementary colours in the same region; i.e., red + cyan light
makes white while red + cyan paint makes black.

Practical Colours

Approximately 128 different hues may be distinguished by the human eye. For each hue around 20 to 30
different saturation values may be seen as different colours. The eye is capable of distinguishing between 60
and 100 different brightness levels. If we multiply these three numbers, we get approximately 350,000 different
colours. 24 bits provides us over 1.6 million colour shades, however, the eye is very sensitive to differences and
under some circumstances small differences can be detected by it.

When a transformation is necessary from the CIE standard colour chart to the colour produced on a specific
display device, we must express the primary colours of the display device by x and y quantities. Good quality
monitors will be calibrated for the CIE colour chart. For example, a colour CRT monitor may have the following
primary colour sources:

x y z
Red 0.628 0.346 0.026
Green 0.268 0.588 0.144
Blue 0.150 0.07 0.780

These three points define a triangle on the CIE chromaticity diagram, as shown in figure 6. Only the points
inside this triangle may be reproduced by the display device.

Colour Spaces and Transformation of Colours

Figure 6: Display Colours

There are many different ways of representing colour, and often
they can be expressed as linear combinations of each other. For
example, the transformation from computer colour intensities
R,G,B (expressed in the range from 0.0 to 1.0) may be done by
the matrix:

[x, y, z] =

 0.628 0.268 0.150
0.346 0.588 0.07
0.026 0.144 0.780

  R
G
B

 (1)

The pure red on the monitor has representation of [1.0, 0, 0]
which then produces the correct CIE values of [0.628, 0.346,
0.026] for the monitor. In order to find out how to represent a
known CIE colour on the display, we have to invert the matrix
and then right multiply it with the vector [x,y,z].

One useful colour space is called the HSV (Hue, Saturation
and Value) space. It is of interest since it is thought to corre-
spond more closely to our perception of colour than the RGB
space we have been discussing. Like the RGB system, a colour
is represented by three values which can be calculated from the
r g b values as follows:
V = max(r, g, b)
S = (max(r, g, b)−min(r, g, b))/max(r, g, b)

Hue (which is an angle between 0 and 360o) is best described procedurally:
if (r = g = b) Hue is undefined, the colour is black, white or grey.
if (r > b) and (g > b) Hue = 120 ∗ (g − b)/((r − b) + (g − b))
if (g > r) and (b > r) Hue = 120 + 120 ∗ (b− r)/((g − r) + (b− r))
if (r > g) and (b > g) Hue= 240 + 120 ∗ (r − g)/((r − g) + (b− g))

There are other, very similar, perceptual colour space called HSL (lightness) and HSI (intensity) which have
slightly different definitions fo saturation and intensity. Note that, every colour in the RGB system is made

Interactive Computer Graphics Lecture 7 4

up of a white component whose magnitude is the minimum out of r g and b, and a pure colour defined by the
ratio of the two non-zero colours when the white component has been subtracted (Figure 7). Note that the pure
colour is not a coherent wavelength as in the CIE diagram. The saturation is the proportion of pure colour. As
in the RGB system colours may be adjusted by changing any of the three values. However, with the HSI system
the three variables each correspond to properties of colour we can easily understand, and thus they are easier to
use to adjust colour palettes and balance colour images.

Alpha Channels

Figure 7: A tri-Stimulus Colour

Colour representations in computer systems sometimes use
four components to represent each colour. The first three are
R G and B and the fourth or alpha value is simply an atten-
uation of the intensity. This does not add anything further to
the representation, but allows greater flexibility in representing
colours and can avoid truncation errors at low intensities. It
can also be used for providing special features such as masking
certain parts of an image.

Interactive Computer Graphics Lecture 7 5

Lecture 8: Introduction to Spline Curves

Figure 1: A non-parametric spline

Splines are used in graphics to represent smooth curves and
surfaces. They use a small set of control points (knots) and a
function that generates a curve through those points. This al-
lows the creation of complex smooth shapes without the need
for mainpulating many short line segments or polygons at the
cost of a little extra computation time when the objects of a
scene are being designed. We will start with a simple, but not
very useful spline. Taking the equation y = f(x), we can ex-
press f as a polynomial function, say:

y = a2x
2 + a1x+ a0

If we now take any three points [x0, y0], [x1, y1] and [x2, y2], we
can substitute then into the equation to get three simultaneous equations which we can solve for the unknowns
a2, a1 and a0. We now have the equation of a curve interpolating the three points. It is of course a parabola, or
parabolic spline. Notice that we don’t have any control over the curve. There is only one parabola that will fit
the data as shown in figure 1.

Parametric Splines

We can improve our choice by the simple expedient of using a parametric spline. Let us consider first a quadratic
polynomial spline written in vector notation as:

P = a2µ
2 + a1µ+ a0 (1)

where a0,a1 and a2 are constant vectors whose values determine the shape of the spline. For two dimensional
curves we now therefore have six unknowns (rather than the three previously). We can use these extra degrees
of freedom to control the shape of the curve.

(a) (b) (c)

(d)

Figure 2: Possibilities using parametric splines

We will use the convention that 0 ≤ µ ≤ 1 over the range of interest. Hence at µ = 0 the curve is at the
first point to be interpolated, and at µ = 1 it is at the last. Now consider interpolating the three points as before
(P0 = [x0, y0],P1 = [x1, y1] and P2 = [x2, y2]). When µ = 0 the curve passes through the first point, say

Interactive Computer Graphics Lecture 8 1

P0, and so, substituting µ = 0 into equation 1 we can write P0 = a0. Similarly, when µ = 1 the point passes
through the last point, say P2, and this gives us the equation:

P2 = a2 + a1 + a0,

substituting for a0 we get
P2 −P0 = a2 + a1. (2)

We have now met all our conditions except that the curve shall pass through P1. We can choose µ anywhere
in the range 0 < µ < 1, and get a third equation to solve for the curve parameters. In other words we can
now pick one of a family of curves interpolating the three points, by selecting the value of µ at P1. Choosing
µ = 1/4 we get

P2 −P0 = a2/16 + a1/4. (3)

We can now solve equations 2 and 3 for the values of a1 and a2 and draw the curve as shown in Figure 2(d).
Further possible curves using the same three points and parametric equation are shown in Figures 2(a), 2(b) and
2(c).

SplinePatches

Figure 3: A simple way to join patches

Although we have gained more freedom by using
the parametric form, we do not have any intuitive
way of using it. That is to say, we have no simple
way to choose µ values for each point to get the
type of interpolating spline we want. Moreover,
we still face the problem of having to use ever
higher degrees of polynomials for higher numbers
of points. To overcome these difficulties we intro-
duce a method based on spline patches that allows
simple intuitive spline construction. We define a
different curve between each pair of adjacent knots, as shown in Figure 3. This is most commonly done by
using a cubic spline for each patch, rather than the quadratic splines formulated above. The reason for choosing
a cubic form is so that we can join the patches smoothly together. The equation for a parmetric cubic spline
patch has four unknowns, a0,a1,a2 and a3:

P = a3µ
3 + a2µ

2 + a1µ+ a0 (4)

We use the extra degrees of freedom provided by the cubic equation to set the gradient at either end of the patch,
and thus make it join seamlessly to its neighbours. Looking at Figure 3, we see that this can conveniently be
done by taking the difference of the coordinates on either side of the knot in question. This however is not the
only way of setting this gradient, as we will see later. If we differentiate the curve equation we get:

P′ = 3a3µ
2 + 2a2µ+ a1 (5)

Now consider the two ends of a spline patch between Pi and Pi+1, where µ = 0 or µ = 1. We can find
the positions and gradients at each end by substituting µ = 0 and µ = 1 into equations 4 and 5 which gives:
Pi = a0

P′i = a1

Pi+1 = a3 + a2 + a1 + a0

P′i+1 = 3a3 + 2a2 + a1

We can write this system of equations in matrix form:
1 0 0 0
0 1 0 0
1 1 1 1
0 1 2 3




a0

a1

a2

a3

 =


Pi

P′i
Pi+1

P′i+1

 (6)

Interactive Computer Graphics Lecture 8 2

and since the a values are unknown and the P and P′ known, we need to invert the matrix to solve for the
parameters of the spline patch. 

a0

a1

a2

a3

 =


1 0 0 0
0 1 0 0
−3 −2 −3 −1
2 1 −2 1




Pi

P′i
Pi+1

P′i+1

 (7)

Notice that we have vector quantities, so, this formulation represents eight equations for the 2D case, and twelve
for the 3D case. The matrix is the same for each dimension. For any given set of knots, this cubic patch method
gives a stable, practical solution.

Bezier Curves

Figure 4: A typical Bezier Curve

One of the simplest ways of approximating a curve was made
popular by the French mathematician Pierre Bezier in the con-
text of car body design. It was based on a mathematical formu-
lation by another French mathematician Paul de Casteljau. A
typical Bezier curve is shown in Figure 4. Here four knots P0,
P1, P2, P3 are shown. The gradient at each end of the Bezier
curve is the same as the gradient of the line joining the first two
knots, thus: P′0 = k(P1−P0), where k is the number of knots
- 1. This is an important property as it allows us to join Bezier
patches together smoothly. Computation of the Bezier Curve
may be done in two ways. The first uses a recursive algorithm
based on a method of Casteljau. The idea is illustrated by Fig-
ure 5. For a given value of µ, say 1/2 we first construct the points on the lines [P0,0, P0,1] [P0,1, P0,2] and
[P0,2, P0,3] for the chosen value of µ. These are labelled as the first set of constructed points, P1,0, P1,1 and
P1,2. The new points are joined up and the same procedure is followed to construct the second set of points
P2,0 and P2,1. The process is repeated to find the point P3,0. This is a point on the Bezier curve. As µ varies
from 0 to 1 the locus of P3,0 traces out the Bezier Curve. Using a functional pseudocode which allows us such
liberties as scalar and vector multiplications and typed functions, this algorithm can be written very simply:

Point Casteljau (knots P[] ; int N, int r, float µ)
begin

if (r == 1)
then Casteljau = µ*P[N+1] + (1-µ)*P[N]
else Casteljau = µ*Casteljau(P,N+1,r-1,µ) + (1-µ)*Casteljau(P,N,r-1,µ)

end

and the curve can be drawn with:

for j=1 to L
begin

locus=Casteljau(Knotarray,0,N,j/L)
drawto(locus.x,locus.y)

end

Note that here, and for all subsequent treatment of splines we will use a set of N+1 knots, labelled 0 to N.

Blending

Another way to view a Bezier curve is to think of it as a blend of its knots. In the simplest case, if we apply the
Casteljau algorithm to the degenerate case of two knots we get the parametric line equation:

P = µP0,1 + (1− µ)P0,0

Interactive Computer Graphics Lecture 8 3

Figure 5: Using Casteljau’s construction to
draw a Bezier curve

We can think of this as linearly blending the two points to pro-
duce a third. The parameter µ may be thought of as measuring
the distance along the line. Like the curve constructed using
the Casteljau algorithm, most spline formulations consist of a
blend of the positions of the knots. For more than two points
the blend is expressed by the iterative formulation of the Bezier
Curve:

P(µ) =
N∑

i=0

PiW (N, i, µ)

where W (N, i, µ) is called the Bernstein blending function:

W (N, I, µ) =
(
N

i

)
µi(i− µ)N−i

(
N

i

)
=

N !
(N − i)!i!

As before we are using a parameter µ to determine the distance along the curve, and it can be easily verified
that when µ is 0 or 1 the spline interpolates the end points, P(0) = P0 and P(1) = PN, and that when
0 < µ < 1 then P(µ) is a blend of all the knots Pi.

The iterative equation for the Bezier curve can be computed slightly more efficiently in terms of space
than the recursive form, though for most applications this is not likely to be significant, since it is rare to use
Bezier curves for more than a few points. The iterative solution, though less elegant, generalises to surface
construction more easily, and so tends to be used in preference.

Characteristics of Bezier Curves

Figure 6: The lack of local detail in Bezier
curves

As previously mentioned, Bezier curves have their end gradient
clamped to the slope of the end line segments, and, beyond the
ends they blend the positions of all the points. Since Bezier
Curves are a blend of all their control points there is little local
control over a part of the curve. Figure 6 shows how a large
number of control points tends to be ineffectual with Bezier
curves. Moving the intermediate points has little effect, and it
is not possible to create a curve which wiggles with any degree
of complexity. This problem can be offset to some degree by
pieceing together a number of sections, as we did for the cubic
patches.

Relation between Bezier Curves and Cubic Patches

We noted previously that the order of the Bezier curve is one less than the number of knots, so for four knots
we have a cubic spline. This will be verified by expanding the iterative form of the Bezier curve:

P(µ) =
3∑

i=0

PiW (3, i, µ)

P(µ) = P0(1− µ)3 + 3P1µ(1− µ)2 + 3P2µ
2(1− µ) + P3µ

3

If we multiply out the brackets are collect the terms we get:

P(µ) = a3µ
3 + a2µ

2 + a1µ+ a0

where a3 = P3 − 3P2 + 3P1 −P0

a2 = 3P2 − 6P1 + 3P0

a1 = 3P1 − 3P0

a0 = P0

Interactive Computer Graphics Lecture 8 4

So, we see that the four point Bezier curve is just a cubic spline patch between P0 and P3, with two shape
control points, P1 and P2, which are manipulated by the designer.

We can also show that the Casteljau construction results in the creation of a cubic spline patch. To do this
we expand the the recursion backwards:
P3,0 = µP2,1 + (1− µ)P2,0

= µ[µP1,2 + (1− µ)P1,1] + (1− µ)[µP1,1 + (1− µ)P1,0]
= µ2P1,2 + µ(1− µ)P1,1 + (1− µ)2P1,0

= µ2[µP0,3 + (1− µ)P0,2] + µ(1− µ)[µP0,2 + (1− µ)P0,1]
+(1− µ)2[µP0,1 + (1− µ)P0,0]

if we drop the first subscript, which indicated the construction level of the Casteljau algorithm we get:
P(µ) = µ2[µP3 + (1− µ)P2] + µ(1− µ)[µP2 + (1− µ)P1]

+(1− µ)2[µP1 + (1− µ)P0]
= µ3P3 + µ2(1− µ)P3 + µ(1− µ)2P1 + (1− µ)3P0

which is the same as the blending formulation.
So we can think of a four point Bezier curve as a cubic spline patch with shape control. The curve goes

through points P0 and P3 and by picking up points P1 and P2 with a mouse and moving them we can control
the shape as desired.

The Gradients at the spline ends

To determine the gradient at any point of a parametric spline curve we differentiate it with respect to the
parameter. Thus if:

P(µ) = P0(1− µ)3 + 3P1µ(1− µ)2 + 3P2µ
2(1− µ) + P3µ

3

we differentiate to get:

P′(µ) = −3P0(1− µ)2 + 3P1(1− µ)2 − 6P1µ(1− µ) + 6P2µ(1− µ)− 3P2µ
2 + 3P3µ

2

grouping the terms

P′(µ) = (3P1 − 3P0)(1− µ)2 + (6P2 − 6P1)µ(1− µ) + (3P3 − 3P2)µ2

So at the start, where µ = 0, the gradient is 3P1−3P0 and at the end, where µ = 1, the gradient is 3P3−3P2.
This confirms that the curve is tangential to P1 −P0 at the start and P3 −P2 at the end.

Interactive Computer Graphics Lecture 8 5

DOC Interactive Computer Graphics Tutorial 4 page 1

Tutorial 4: Shading

A graphics scene is to made up of a set of triangles. When one of the triangles is in the standard
viewing system (viewpoint at the origin) it has vertex coordinates:

Vertex Coordinates
P1 (-10, 20, 30)
P2 (15, 25, 25)
P3 (5, -20, 50)

Assume that the triangle is visible from the viewpoint.

1. Find the outer normal vector of the surface.

2. The scene is lit by a single light source which is located at position (-2, -40, -50). Assuming that
only diffuse lighting is being used, find the brightest point on the triangle.

3. If the triangle is to be drawn using interpolation shading, which will be the brightest point?
Assume that the incident light at each point of the triangle is a constant (no inverse square
attenuation of the light).

4. Would the result be different if the inverse square law was taken into account?

5. The triangle is part of a bigger surface. A fourth point P4 at (-25, 25, 40) forms another two
triangles. One is with P1 and P2, and the other with P1 and P3. There are no other faces that meet at
P1.

What is the unit normal vector at P1 that would be used for Gouraud shading or Phong shading.

