
Lecture 1: Three Dimensional graphics: Projections and Transformations

Device Independence
We will  start  with a brief  discussion of two dimensional  drawing primitives.  At the lowest level  of  an 
operating system we have device dependent graphics methods such as:

SetPixel(XCoord,YCoord,Colour);
DrawLine(xs,ys,xf,yf);

which draw objects using pixel coordinates. However it is clearly desirable that we create any graphics 
application in a device independent way.  If we can do this then we can re-size a picture, or transport it to a 
different operating system and it will fit exactly in the window where we place it.  Many graphics APIs 
provide this facility, and it is a straightforward matter to implement it using a world coordinate system. This 
defines the coordinate values to be applied to the window on the screen where the graphics image will be 
drawn. Typically it will use a method of the kind:

SetWindowCoords(WXMin,WYMin,WXMax,WYMax);
WXMin etc are real numbers  whose units  are application dependent.  If  the application is to produce a 
visualisation of a house then the units could be meters, and if it is to draw accurate molecular models the 
units will be m. The application program uses drawing primitives that work in these units, and converts the 
numeric values to pixels just before the image is rendered on the screen. This makes it easy to transport it to 
other systems or to upgrade it when new graphics hardware becomes available. There may be other device 
characteristics that need to be accounted for to achieve complete device independence, for example aspect 
ratios.

In order to implement a world coordinate system we need to be able to translate between world coordinates 
and the device or pixel coordinates.  However, we do not necessarily know what the pixel coordinates of a 
window are, since the user can move and resize it without the program knowing. The first stage is therefore 
to find out what the pixel coordinates of a window are, which is done using an enquiry procedure of the 
kind:

GetWindowPixelCoords(DXmin, DYmin, DXmax, DY max)
In the Windows API this procedure is called GetClientRect. Having established both the world and device 
coordinate systems, it is possible to define a normalisation process to compute the pixel coordinates from 
the world coordinates. This is done by simple ratios as shown in the  figure 1. For the X direction:

(Xw-WXmin)/(WXMax-WXMin)  =  (Xd - DXMin)/(DXMax-DXMin)

Rearranging,  and applying the same idea 
to the Y direction yields a pair of simple 
linear equations equations:
 Xd = Xw * A + B;

Yd = Yw * C + D;
where  the  four  constants  A,  B C and D 
define  the  normalisation  between  the 
world coordinate system and the window 
pixel coordinates. Whenever a window is 
re-sized it is necessary to re-calculate the 
constants A,B,C and D.

Graphical Input
The most important input device is the mouse, which records the distance moved in the X and Y directions. 
In the simplest form it provides at least three pieces of information: the x distance moved, the y distance 
moved and the button status. The mouse causes an interrupt every time it is moved, and it is up to the 
system software to keep track of the changes. Note that the mouse is not connected with the screen in any 
way. Either the operating system or the application program must achieve the connection by drawing the 
visible marker.
The operating system must share control of the mouse with the application, since it needs to act on mouse 
actions that take place outside the graphics window. For instance, processing a menu bar or launching a 
different application. It therefore traps all mouse events (ie changes in position or buttons) and informs the 
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program whenever an event has taken place using a "callback procedure".  The application program must, 
after every action carried out, return to the callback procedure (or event loop) to determine whether any 
mouse action (or other event such as a keystroke) has occurred. The callback is the main program part of 
any application, and, in simplified pseudo code, looks like this:
      while (executing) do
      {   if (menu event) ProcessMenuRequest();
           if (mouse event) 
    { GetMouseCoordinates();

GetMouseButtons();
PerformMouseProcess();

}
if (window resize event) RedrawGraphics();

       }
The procedure ProcessMenuRequest  will be used to launch all the normal actions, such as save and open 
and quit,  together with all  the application specific requests.  The procedures  GetMouseCoordinates   and 
PerformMouseProcess   will  be  used by the  application  writer  to  create  whatever  effect  is  wanted,  for 
example, moving an object with the mouse. This may well involve re-drawing the graphics. If the window 
is re-sized then the whole picture will be re-drawn.

3-Dimensional Objects Bounded by Planar Polygons (Facets)
Most graphical scenes are made up of planar facets. Each facet is an ordered set of 3D vertices, lying on one 
plane,  which form a  closed  polygon.  The data  describing  a  facet  are  of  two types.  First,  there  is  the 
numerical  data  which  is  a  list  of  3D points,  (3*N numbers  for  N points),  and  secondly,  there  is  the 
topological data which describes how points are 
connected to form edges and facets. 

Projections of Wire-Frame Models
Since the display device is only 2D, we have to 
define  a  transformation  from the 3D space  to 
the  2D  surface  of  the  display  device.  This 
transformation is called a projection. In general, 
projections  transform  an  n-dimensional  space 
into  an  m-dimensional  space  where  m<n. 
Projection of an object onto a surface is done by 
selecting  a  viewpoint  and  then  defining 
projectors or lines which join each vertex of the 
object to the viewpoint. The projected vertices 
are  placed  where  the  projectors  intersect  the 
projection surface. 

The most common (and simplest) projections used for viewing 3D scenes use planes for the projection 
surface  and  straight  lines  for  projectors.  These  are  called  planar  geometric  projections.  A rectangular 
window can be defined defined on the plane of projection which can be mapped into the device window as 
described above. Once all the vertices of an object have been projected it can be rendered. An easy way to 
do this is drawing all the projected edges. This is called a wire-frame representation. Note that for such 
rendering the topological information defining the facets is not required. 

There are two common classes of planar geometric projections. Parallel projections use parallel projectors, 
perspective projections use projectors which pass through one single point called the viewpoint. In order to 
minimise confusion in dealing with a general projection problem, we can standardise the plane of projection 
by making it always parallel to the z=0 plane, (the plane which contains the x and y axis). This does not 
limit the generality of our discussion because if the required projection plane is not parallel to the z=0 plane 
then we can use a coordinate transformations in 3D and make so. We will see shortly how to do this. We 
shall restrict the viewed objects to be in the positive half space (z>0), therefore the projectors starting at the 
vertices will always run in the negative z direction.
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Parallel Projections
If the direction of a projector is given by vector d=[dx, dy, dz], and it passes through the vertex V=[Vx, Vy, 
Vz] it may be expressed by the parametric line equation:

P  =  V  + µd
In orthographic  projection the projectors are perpendicular to the projection 
plane, which we define as z=0. In this case the projectors are in the direction 
of the z axis and:

d = [0,0,-1]
and so Px = Vx

and Py = Vy

which means that the x and y co-ordinates of the projected vertex is equal to 
the  x  and  y  co-ordinates  of  the  vertex  itself  and  no  calculations  are 
necessary.  Some  examples  of  a  wireframe  cube  drawn  in  orthographic 
projection are shown opposite. 

If the projectors are not perpendicular to the plane of projection then the projection is called oblique. The 
projected vertex intersects the z=0 plane where the z component of the P vector is equal to zero, therefore:

Pz = 0 = Vz + µ dz

so µ = - Vz/ dz

and we can use this value of µ to compute:
Px = Vx + µ dx  =  Vx - dxVz/ dz

and Py = Vy + µ dy  =   Vy - dyVz/ dz

These  projections  are  similar  to  the  orthographic 
projection with one or other of the dimensions scaled. 
They are not often used in practice.

Perspective Projections
In  perspective  projection,  all  the  rays  pass  through 
one point in space, the centre of projection as shown 
in the figure 2. If the centre of projection is behind the 
plane of projection then the orientation of the image is 
the  same  as  the  image.  By contrast,  in  a  pin  hole 
camera  it  is  inverted.  To  calculate  perspective 
projections we adopt a canonical form in which the 
centre of projection is  at  the origin,  and the projection plane is placed at  a constant  z value,  z=f.  The 
projection of a 3D point onto the z=f plane is calculated as follows. If we are projecting the point V then the 
projector has equation:  

P = µV
Since the projection plane has equation z=f, it follows that, at the point 
of intersection:   

f = µ Vz

If  we  write  µp =  f/  Vz for  the  intersection  point  on  the  plane  of 
projection then:
thus

Px = µp Vx = f* Vx/ Vz 
and Py = µp Vy = f* Vy / Vz

The factor  µp is  called the foreshortening factor,  because the further 
away an object  is,  the larger Vz and the smaller  is  its  image.  Some 
examples of the perspective projection of a cube are shown opposite.

The  introduction  of  canonical  forms  for  perspective  and  orthographic  projection  simplifies  their 
computation. However it means that we must be able to transform a scene, which could be defined in any 
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3D coordinate system, such that the view direction is along the z axis and (for perspective projection) the 
viewpoint is at the origin. In general we would like to change the coordinates of every point in the scene, 
such that some chosen viewpoint C = [Cx,Cy,Cz] is the origin and some view direction d = [dx,dy,dz] is the 
Z axis. 

Frequently, we may also want to transform 
the  points  of  a  graphical  scene  for  other 
purposes  such  as  generation  of  special 
effects  like  rotating  or  shrinking  objects. 
Transformations  of  this  kind are  achieved 
by multiplying every point of the scene by a 
transformation  matrix.  Unfortunately 
however,  we  cannot  perform  a  general 
translation  using  normal  Cartesian 
coordinates,  and  for  that  reason  we  now introduce  a  system called  homogeneous  coordinates.   Three 
dimensional points expressed in homogeneous form have a fourth ordinate:

P = [px, py, pz,s]
The fourth ordinate is a scale factor, and conversion to Cartesian form is achieved by dividing it into the 
other ordinates, so 

[px, py, pz,s]     has Cartesian coordinate equivalent    [px/s, py/s, pz/s]. 
In most cases s will be 1. The point of introducing homogenous coordinates is to allow us to translate the 
points of a scene by using matrix multiplication.

The matrix for scaling a graphical scene is also easily expressed in homogenous form:

Notice that these two transformations are not commutative, and it is essential that they are carried out in the 
correct order. The figure below illustrates the problem for a simple picture. 

Rotation has to be treated differently since we need to specify an axis. The matrices for rotation about the 
three Cartesian axes are:

Some care is required with the signs. The above formulation obeys the conventions of a left hand axis 
system. That is, if the positive y-axis is taken as vertical, and the positive x-axis horizontal to the right, the 
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positive z-axis is into the page. In these cases, rotation is in a clockwise direction when viewed from the 
positive side of the axis, or vice versa, anti-clockwise when viewed from the negative side of the axis. The 
derivation of the RzRz matrix is as follows:

The others may be derived similarly. Inversions of the transformation matrices can be computed easily, 
without recourse to Gaussean elimination, by considering the meaning of each transformation. For scaling, 
we substitute 1/sx for sx, 1/ sy for sy and 1/sz for sz to invert the matrix. 

For translation we substitute -tx for tx, - ty for ty and - tz for tz. 

For the rotation matrices we note that:
Cos(-θ) = Cos(θ) and Sin(-θ) = -Sin(θ)

Hence to invert the matrix we simply change the sign of the Sin terms.
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