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Interactive Computer Graphics

• The Graphics Pipeline: Illumination and Shading

Some slides adopted from 
F. Durand and B. Cutler, MIT
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The Graphics Pipeline
Modelling 

Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display Output: 2D image
for framebuffer display

Input:
- geometric model
- illumination model
- camera model
- viewport
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Modelling 
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

The Graphics Pipeline

• 3D models are defined in their
own coordinate system

• Modeling transformations
orient the models within a
common coordinate frame
(world coordinates)
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Modelling 
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

The Graphics Pipeline

• Vertices are lit (shaded)
according to material
properties, surface properties
and light sources

• Uses a local lighting model
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Modelling 
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

The Graphics Pipeline

• Maps world space to eye
(camera) space

• Viewing position is
transformed to origin and
viewing direction is oriented
along some axis (typically z)
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Modelling 
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

The Graphics Pipeline

• Transforms to Normalized Device
Coordinates

• Portions of the scene outside the
viewing volume (view frustum) are
removed (clipped)

Eye space NDC
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Modelling 
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

The Graphics Pipeline

• The objects are projected to
the 2D imaging plane (screen
space)

NDC Screen Space
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Modelling 
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

The Graphics Pipeline

• Rasterizes objects into pixels
• Interpolate values inside

objects (color, depth, etc.)
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Modelling 
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

The Graphics Pipeline

• Handles occlusions
• Determines which objects are

closest and therefore visible
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The Physics of shading

• If we look at a point on an object we perceive a
colour and a shading intensity that depends on the
various characteristics of the object and the light
sources that illuminate it.

• For the time being we will consider only the
brightness at each point. We will extend the treatment
to colour later.
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The Physics of shading

• Object properties:
– Looking at a point on an object we see the reflection of the

light that falls on it. This reflection is governed by:
1. The position of the object relative to the light sources
2. The surface normal vector
3. The albedo of the surface (ability to adsorb light energy)
4. The reflectivity of the surface

• Light source properties:
– The important properties of the light source are
1. Intensity of the emitted light
2. The distance to the point on the surface
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Radiometry

• Energy of a photon

• Radiant Energy of n photons

• Radiation flux (electromagnetic flux, radiant flux)
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Radiometry
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• Radiance – radiant flux per unit solid angle per unit
projected area

– Number of photons arriving
   per time at a small area
   from a particular direction
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Radiometry

• Irradiance – differential flux falling onto differential
area

• Irradiance can be seen as a density of the incident flux
falling onto a surface.

• It can be also obtained by integrating the radiance
over the solid angle.
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Light Emission

• Light sources: sun, fire, light bulbs etc.
• Consider a point light source that emits light

uniformly in all directions
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Reflection & Reflectance

• Reflection - the process by which electromagnetic flux
incident on a surface leaves the surface without a change in
frequency.

• Reflectance – a fraction of the incident flux that is reflected
• We do not consider:

– absorption, transmission, fluorescence
– diffraction
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Reflectance

• Bidirectional Reflectance Distribution Function (BRDF)
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Isotropic BRDFs

• Rotation along surface normal does not change reflectance
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Anisotropic BRDFs

• Surfaces with strongly oriented microgeometry elements
• Examples:

– brushed metals,
– hair, fur, cloth, velvet

Source: Westin et.al 92
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Properties of BRDFs

• Non-negativity

• Energy Conservation

• Reciprocity
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Reflectance

• Bidirectional scattering-surface distribution Function
(BSSRDF)

Surface

 Jensen et al. SIGGRAPH 2001
A Practical Model for Subsurface Light Transport
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How to compute reflected radiance?

• Continuous version

• Discrete version – n point light sources
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Ideal Diffuse Reflectance

• Assume surface reflects equally in all directions.
• An ideal diffuse surface is, at the microscopic level, a

very rough surface.
– Example: chalk, clay, some paints

Surface
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Ideal Diffuse Reflectance

• BRDF value is constant

Surface
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• Ideal diffuse reflectors reflect light according to Lambert's
cosine law.

Ideal Diffuse Reflectance
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Ideal Diffuse Reflectance

• Single Point Light Source
– kd: The diffuse reflection coefficient.
– n: Surface normal.
– l: Light direction.

Surface

θ
l

n
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Ideal Diffuse Reflectance – More Details

• If n and l are facing away from each other, n • l
becomes negative.

• Using max((n • l), 0) makes sure that the result is
zero.

– From now on, we mean max() when we write •.

Do not forget to normalize your vectors for
the dot product!
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Ideal Specular Reflectance

• Reflection is only at mirror angle.
– View dependent
– Microscopic surface elements are usually oriented in the

same direction as the surface itself.
– Examples: mirrors, highly polished metals.

Surface

θ
l

n

r
θ
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Ideal Specular Reflectance

• Special case of Snell’s Law
– The incoming ray, the surface normal, and the reflected ray

all lie in a common plane.

Surface

θl l

n

r
θr
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Non-ideal Reflectors

• Snell’s law applies only to ideal mirror reflectors.
• Real materials tend to deviate significantly from ideal

mirror reflectors.
• They are not ideal diffuse surfaces either …
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Non-ideal Reflectors

• Simple Empirical Model:
– We expect most of the reflected light to travel in the

direction of the ideal ray.
– However, because of microscopic surface variations we

might expect some of the light to be reflected just slightly
offset from the ideal reflected ray.

– As we move farther and farther, in the angular sense, from
the reflected ray we expect to see less light reflected.
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Incident  

Light 

Perfectly Matt surface 

The reflected intensity is the same in all directions 

Incident  

Light 

Reflected 

Direction 

Slightly specular (shiny) surface 

Slightly higher intensity in the reflected direction 

Incident  

Light 

Reflected 

Direction 

Highly specular (shiny) surface 

High intensity in the reflected direction 

Incident  

Light 

Reflected 

Direction 

Perfect Mirror 

All light re-admitted in the reflected direction 

Non-ideal Reflectors: Surface Characteristics
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The Phong Model

• How much light is reflected?
– Depends on the angle between the ideal reflection direction

and the viewer direction α.

Surface

θ
l

n
r

θ
Camera

v

α
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The Phong Model

• Parameters
– ks: specular reflection coefficient
– q : specular reflection exponent

Surface

θ
l

n
r

θ
Camera

v

α
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The Phong Model

• Effect of the q  coefficient
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The Phong Model

Surface

θ
l

n

θ
r

r
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Blinn-Phong Variation

• Uses the halfway vector h between l and v.

Surface

l

n

Camera
v

h

β
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Phong vs Blinn-Phong

• The following spheres illustrate specular reflections as the
direction of the light source and the coefficient of shininess is
varied.
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The Phong Model

• Sum of three components:
diffuse reflection + specular reflection + ambient.

Surface
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Ambient Illumination

• Represents the reflection of all indirect illumination.
• This is a total hack!
• Avoids the complexity of global illumination.
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Putting it all together

• Phong Illumination Model
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Putting it all together

• Phong Illumination Model
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Adding color

• Diffuse coefficients:
– kd-red, kd-green, kd-blue

• Specular coefficients:
– ks-red, ks-green, ks-blue

• Specular exponent:
q
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Inverse Square Law

• It is well known that light falls off according to an
inverse square law. Thus, if we have light sources
close to our polygons we should model this effect.

where d is the distance from the light source to the
object
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Heuristic Law

• Although physically correct the inverse square law
does not produce the best results.

• Instead the following is often used:

where s is an heuristic constant.
• One might be tempted to think that light intensity falls

off with the distance to the viewpoint, but it doesn’t!
• Why not?
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Questions?
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Using Shading

• There are three levels at which shading can be applied
in polygon based systems:

Flat Shading
Gouraud Shading
Phong Shading

• They provide increasing realism at higher
computational cost

Interpolation Shading
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Using Shading

• Flat Shading:
– Each polygon is shaded uniformly over its surface.
– The shade is computed by taking a point in the centre and the surface

normal vector. (Equivalent to a light source at infinity)
– Usually only diffuse and ambient components are used.

• Interpolation Shading:
– A more accurate way to render a shaded polygon is to compute an

independent shade value at each point.
– This is done quickly by interpolation:
1. Compute a shade value at each vertex
2. Interpolate to find the shade value at the boundary
3. Interpolate to find the shade values in the middle
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Calculating the shades at the edges

d1

d2

L = (d1L3+d2L1) / (d1+d2)

L3

L2

L1
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Calculating the internal shades

d1 d2

L = (d1LB+d2LA) / (d1+d2)

L3

L2

L1

LBLA

Graphics Lecture 3:  Slide 51

Interpolating over polygons

• In addition to interpolating shades over polygons, we
can interpolate them over groups of polygons to
create the impression of a smooth surface.

• The idea is to create at each vertex an averaged
intensity from all the polygons that meet at that
vertex.
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nave =(n1 + n2 + n3 + n4)/4 

n1 

n2 

n3 

n4 

Gouraud Shading 

(Object Space) 

nave 

Computing an average normal vector at a vertex



14

Graphics Lecture 3:  Slide 53

Smooth Shading

• Need to have per-vertex normals
• Gouraud Shading

– Interpolate color across triangles
– Fast, supported by most of the graphics accelerator cards
– Can’t model specular components accurately, since we do

not have the normal vector at each point on a polygon.

• Phong Shading
– Interpolate normals across triangles
– More accurate modelling of specular compoents, but

slower.
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Interpolation of the 3D normals

• We may express any point for this facet in parametric
form:

P =  V1 + µ1(V2 - V1) + µ2(V3-V1)
• The average normal vector at the same point may be

calculated as the vector a:
a = n1 + µ1(n2 - n1) + µ2(n3-n1)

and then
naverage = a / | a |
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2D or 3D

• The interpolation calculations may be done in either
2D or 3D

• For specular reflections the calculation of the
reflected vector and viewpoint vector must be done in
3D.


