Interactive Computer Graphics

- The Graphics Pipeline: Illumination and Shading

Some slides adopted from
Graphics Lecture 3: Slide 1 F. Durand and B. Cutler, MIT

The Graphics Pipeline

Modelling Transformations
Illumination (Shading)

(Shading)

Viewing Transformation
(Perspective / Orthographic)
Clipping
Projection
(to Screen Space)
Scan Conversion

Visibility / Display

Output: 2D image
for framebuffer display
for framebuffer display

The Graphics Pipeline

Modelling Transformations
Illumination (Shading)
Viewing Transformation (Perspective / Orthographic)
Clipping
Projection (to Screen Space)
Scan Conversion (Rasterization)
Visibility / Display

- 3D models are defined in their own coordinate system
- Modeling transformations orient the models within a common coordinate frame (world coordinates)

Object space
World space

The Graphics Pipeline

The Graphics Pipeline

- Maps world space to eye
(camera) space
- Viewing position is
transformed to origin and viewing direction is oriented along some axis (typically z)

The Graphics Pipeline

$\substack{\text { Modelling } \\ \text { Transformations }}$
Illumination (Shading)
(

- Transforms to Normalized Device Coordinates
- Portions of the scene outside the viewing volume (view frustum) are removed (clipped)
Viewing Transformation
(Perspective / Orthographic)

Clipping
Projection (to Screen Space)
Scan Conversion (Rasterization)
Visibility / Display
Graphics Lecture 3: Slide 6

Eye space

The Graphics Pipeline

The Graphics Pipeline

Modelling Transformations
Illumination (Shading)
Viewing Transformation (Perspective / Orthographic)
Clipping
Projection (to Screen Space) Scan Conversion (Rasterization) Visibility / Display Graphics Lecture 3: Slide 8

- Rasterizes objects into pixels
- Interpolate values inside objects (color, depth, etc.)

The Graphics Pipeline

Modelling Transformations
Illumination (Shading)
Viewing Transformation (Perspective / Orthographic)
Clipping
Projection (to Screen Space)
Scan Conversion (Rasterization)
Visibility / Display
Graphics Lecture 3: Slide 9

- Handles occlusions
- Determines which objects are closest and therefore visible

The Physics of shading

- Object properties:
- Looking at a point on an object we see the reflection of the light that falls on it. This reflection is governed by:

1. The position of the object relative to the light sources
2. The surface normal vector
3. The albedo of the surface (ability to adsorb light energy)
4. The reflectivity of the surface

- Light source properties:
- The important properties of the light source are

1. Intensity of the emitted light
2. The distance to the point on the surface
[^0]
The Physics of shading

- If we look at a point on an object we perceive a colour and a shading intensity that depends on the various characteristics of the object and the light sources that illuminate it.
- For the time being we will consider only the brightness at each point. We will extend the treatment to colour later.

Graphics Lecture 3: Slide 10

Radiometry

- Energy of a photon

$$
e_{\lambda}=\frac{h c}{\lambda} \quad h \approx 6.63 \cdot 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \quad c \approx 3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}
$$

- Radiant Energy of n photons

$$
Q=\sum_{i=1}^{n} \frac{h c}{\lambda_{i}}
$$

- Radiation flux (electromagnetic flux, radiant flux) Units: Watts

$$
\Phi=\frac{d Q}{d t}
$$

Graphics Lecture 3: Slide 12

Radiometry

- Radiance - radiant flux per unit solid angle per unit projected area
- Number of photons arriving per time at a small area from a particular direction

$$
L(\omega)=\frac{d^{2} \Phi}{\cos \theta d A d \omega}
$$

$$
\text { Units }: \frac{\text { Watt }}{\text { meter }^{2} \text { steradian }}
$$

Radiometry

- Irradiance - differential flux falling onto differential area

$$
E=\frac{d \Phi}{d A} \quad \text { Units }: \frac{\text { Watt }}{\text { meter }^{2}}
$$

- Irradiance can be seen as a density of the incident flux falling onto a surface.
- It can be also obtained by integrating the radiance over the solid angle.

Graphics Lecture 3: Slide 14

Light Emission

- Light sources: sun, fire, light bulbs etc.
- Consider a point light source that emits light uniformly in all directions
$E=\frac{\Phi_{s} \cos \theta}{4 \pi d^{2}} \quad L=\frac{\Phi_{s}}{4 \pi d^{2}}$
Φ_{s} - power of the light source
d - distance to the light source

Graphics Lecture 3: Slide 15

Reflection \& Reflectance

- Reflection - the process by which electromagnetic flux incident on a surface leaves the surface without a change in frequency.
- Reflectance - a fraction of the incident flux that is reflected
- We do not consider:
- absorption, transmission, fluorescence
- diffraction

Graphics Lecture 3: Slide 16

Reflectance

- Bidirectional Reflectance Distribution Function (BRDF)

$$
f_{r}\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right)=\frac{d L_{r}\left(\theta_{r}, \phi_{r}\right)}{d E_{i}\left(\theta_{i}, \phi_{i}\right)} \quad \text { Units }: \frac{1}{\text { steradian }}
$$

Isotropic BRDFs

- Rotation along surface normal does not change reflectance

$$
f_{r}\left(\theta_{i}, \theta_{r}, \phi_{r}-\phi_{i}\right)=f_{r}\left(\theta_{i}, \theta_{r}, \phi_{d}\right)=\frac{d L_{r}\left(\theta_{r}, \phi_{d}\right)}{d E_{i}\left(\theta_{i}, \phi_{d}\right)}
$$

Anisotropic BRDFs

- Surfaces with strongly oriented microgeometry elements
- Examples:
- brushed metals,
hair, fur, cloth, velvet

Source: Westin et.al 92
Graphics Lecture 3: Slide 19

Properties of BRDFs

- Non-negativity

$$
f_{r}\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right) \geq 0
$$

- Energy Conservation $\int_{\Omega} f_{r}\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right) d \mu\left(\theta_{r}, \phi_{r}\right) \leq 1 \quad$ for $\operatorname{all}\left(\theta_{i}, \phi_{i}\right)$
- Reciprocity

$$
f_{r}\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right)=f_{r}\left(\theta_{r}, \phi_{r}, \theta_{i}, \phi_{i}\right)
$$

Graphics Leeture 3: Slide 20

Reflectance

- Bidirectional scattering-surface distribution Function (BSSRDF)

Jensen et al. SIGGRAPH 2001
A Practical Model for Subsurface Light Transport

Graphis Lectures: Side 2
Surface

How to compute reflected radiance?

- Continuous version

$$
\begin{aligned}
& L_{r}\left(\omega_{r}\right)=\int_{\Omega} f_{r}\left(\omega_{i}, \omega_{r}\right) d E_{i}\left(\omega_{i}\right)= \\
& =\int_{\Omega} f_{r}\left(\omega_{i}, \omega_{r}\right) d L_{i}\left(\omega_{i}\right) \cos \left(\omega_{i} \cdot n\right) d \omega_{i} \quad \omega=(\theta, \phi)
\end{aligned}
$$

- Discrete version - n point light sources

$$
\begin{aligned}
& L_{r}\left(\omega_{r}\right)=\sum_{j=1}^{n} f_{r}\left(\omega_{i j}, \omega_{r}\right) E_{j}= \\
& =\sum_{j=1}^{n} f_{r}\left(\omega_{i j}, \omega_{r}\right) \cos \theta_{j} \frac{\Phi_{s j}}{4 \pi d_{j}^{2}}
\end{aligned}
$$

Graphics Lecture 3: Slide 22

Ideal Diffuse Reflectance

- BRDF value is constant

$$
L_{r}\left(\omega_{r}\right)=\int_{\Omega} f_{r}\left(\omega_{i}, \omega_{r}\right) d E_{i}\left(\omega_{i}\right)=\quad d B=d A \cos \theta_{i}
$$

$$
=f_{r} \int_{\Omega} d E_{i}\left(\omega_{i}\right)=
$$

$$
=f_{r} E_{i}
$$

Ideal Diffuse Reflectance

- Ideal diffuse reflectors reflect light according to Lambert's cosine law.

Graphics Lecture 3: Slide 2

Ideal Diffuse Reflectance

- Single Point Light Source
$-k_{d}$: The diffuse reflection coefficient.
- n: Surface normal.
- I: Light direction.

Ideal Specular Reflectance

- Reflection is only at mirror angle.
- View dependent
- Microscopic surface elements are usually oriented in the same direction as the surface itself.
- Examples: mirrors, highly polished metals.

Graphics Lecture 3: Slide 28

Graphics Lecture 3: Slide 27

Ideal Specular Reflectance

- Special case of Snell's Law
- The incoming ray, the surface normal, and the reflected ray all lie in a common plane.

$$
\begin{aligned}
& n_{l} \sin \theta_{l}=n_{r} \sin \theta_{r} \\
& n_{l}=n_{r} \\
& \theta_{l}=\theta_{r}
\end{aligned}
$$

Non-ideal Reflectors

- Snell's law applies only to ideal mirror reflectors.
- Real materials tend to deviate significantly from ideal mirror reflectors.
- They are not ideal diffuse surfaces either ..

Graphics Lecture 3: Slide 30

Non-ideal Reflectors: Surface Characteristics

Perfectly Matt surface
The reflected intensity is the same in all directions

Graphics Lecture 3: Slide 32

The Phong Model

- How much light is reflected?
- Depends on the angle between the ideal reflection direction and the viewer direction α.

Graphics Lecture 3: Slide 35

The Phong Model

- Parameters

$-k_{s}$: specular reflection coefficient
$-q$: specular reflection exponent

$$
L\left(\omega_{r}\right)=k_{s}(\cos \alpha)^{q} \frac{\Phi_{s}}{4 \pi d^{2}}=k_{s}(\mathbf{v} \cdot \mathbf{r})^{q} \frac{\Phi_{s}}{4 \pi d^{2}}
$$

Blinn-Phong Variation

- Uses the halfway vector \mathbf{h} between \mathbf{I} and \mathbf{v}.

$\mathbf{h}=\frac{\mathbf{l}+\mathbf{v}}{\|\mathbf{l}+\mathbf{v}\|}$

$L\left(\omega_{r}\right)=k_{s}(\cos \beta)^{q} \frac{\Phi_{s}}{4 \pi d^{2}}=k_{s}(\mathbf{n} \cdot \mathbf{h})^{q} \frac{\Phi_{s}}{4 \pi d^{2}}$

Phong vs Blinn-Phong

- The following spheres illustrate specular reflections as the direction of the light source and the coefficient of shininess is varied.

Blinn-Phong
(Lower Exponent)

Graphics Lecture 3: Slide 38

Ambient Illumination

- Represents the reflection of all indirect illumination.
- This is a total hack!
- Avoids the complexity of global illumination.

$L\left(\omega_{r}\right)=k_{a}$

Graphics Leeture 3: Slide 40

Putting it all together

- Phong Illumination Model

$$
L\left(\omega_{r}\right)=k_{a}+\left(k_{d}(\mathbf{n} \cdot \mathbf{l})+k_{s}(\mathbf{v} \cdot \mathbf{r})^{q}\right) \frac{\Phi_{s}}{4 \pi d^{2}}
$$

Ambient
Diffuse

Specular $=$ Phong Reflection

Graphics Lecture 3: Silide 4

Adding color

- Diffuse coefficients:
$-k_{d-\text { red }}, k_{d-\text { green }}, k_{d-\text {-bue }}$
- Specular coefficients:
$-k_{\text {s-rede }} k_{\text {sgreen }} k_{\text {sbbhe }}$
- Specular exponent
q

Putting it all together

- Phong Illumination Model

$$
L\left(\omega_{r}\right)=k_{a}+\left(k_{d}(\mathbf{n} \cdot \mathbf{l})+k_{s}(\mathbf{v} \cdot \mathbf{r})^{q}\right) \frac{\Phi_{s}}{4 \pi d^{2}}
$$

Grapistoerres. Sine

Inverse Square Law

- It is well known that light falls off according to an inverse square law. Thus, if we have light sources close to our polygons we should model this effect.

$$
L\left(\omega_{r}\right)=k_{a}+\left(k_{d}(\mathbf{n} \cdot \mathbf{l})+k_{s}(\mathbf{v} \cdot \mathbf{r})^{q}\right) \frac{\Phi_{s}}{4 \pi d^{2}}
$$

where d is the distance from the light source to the object

Graphics Lecture 3: Slide 44

Heuristic Law

- Although physically correct the inverse square law does not produce the best results.
- Instead the following is often used:

$$
L\left(\omega_{r}\right)=k_{a}+\left(k_{d}(\mathbf{n} \cdot \mathbf{l})+k_{s}(\mathbf{v} \cdot \mathbf{r})^{q}\right) \frac{\Phi_{s}}{4 \pi(d+s)}
$$

where s is an heuristic constant.

- One might be tempted to think that light intensity falls off with the distance to the viewpoint, but it doesn't!
- Why not?

Graphics Lecture 3: Slide 4,

Using Shading

- There are three levels at which shading can be applied in polygon based systems:

Flat Shading
$\left.\begin{array}{l}\text { Gouraud Shading } \\ \text { Phong Shading }\end{array}\right\}$ Interpolation Shading

- They provide increasing realism at higher computational cost

Graphics Lecture 3: Slide 47

Using Shading

- Flat Shading
- Each polygon is shaded uniformly over its surface.
- The shade is computed by taking a point in the centre and the surface normal vector. (Equivalent to a light source at infinity)
Usually only diffuse and ambient components are used.
- Interpolation Shading:
- A more accurate way to render a shaded polygon is to compute an independent shade value at each point.
-This is done quickly by interpolation:

1. Compute a shade value at each vertex
2. Interpolate to find the shade value at the boundary
3. Interpolate to find the shade values in the middle

Calculating the shades at the edges

Graphics Lecture 3: Slide 49

Interpolating over polygons

- In addition to interpolating shades over polygons, we can interpolate them over groups of polygons to create the impression of a smooth surface.
- The idea is to create at each vertex an averaged intensity from all the polygons that meet at that vertex.

Graphics Lecture 3: Slide 51

Calculating the internal shades

Graphics Lecture 3: Slide 50

Computing an average normal vector at a vertex

Graphics Lecture 3: Slide 52

Smooth Shading

- Need to have per-vertex normals
- Gouraud Shading
- Interpolate color across triangles
- Fast, supported by most of the graphics accelerator cards - Can't model specular components accurately, since we do not have the normal vector at each point on a polygon.
- Phong Shading
- Interpolate normals across triangles
- More accurate modelling of specular compoents, but slower.

Interpolation of the $3 D$ normals

- We may express any point for this facet in parametric form:

$$
\mathbf{P}=\mathbf{V}_{\mathbf{1}}+\mu_{1}\left(\mathbf{V}_{\mathbf{2}}-\mathbf{V}_{\mathbf{1}}\right)+\mu_{2}\left(\mathbf{V}_{\mathbf{3}}-\mathbf{V}_{\mathbf{1}}\right)
$$

- The average normal vector at the same point may be calculated as the vector \mathbf{a} :

$$
\mathbf{a}=\mathbf{n}_{1}+\mu_{1}\left(\mathbf{n}_{\mathbf{2}}-\mathbf{n}_{1}\right)+\mu_{2}\left(\mathbf{n}_{\mathbf{3}}-\mathbf{n}_{\mathbf{1}}\right)
$$

and then

Graphics Lecture s: Slide st

$2 D$ or $3 D$

- The interpolation calculations may be done in either 2D or 3D
- For specular reflections the calculation of the
reflected vector and viewpoint vector must be done in 3D.

[^0]: Graphics Lecture 3: Slide 11

