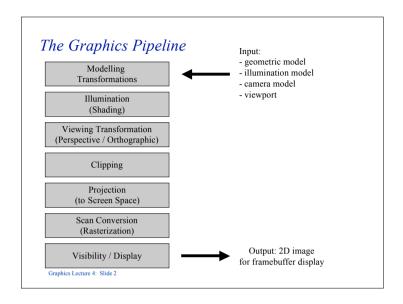
Interactive Computer Graphics

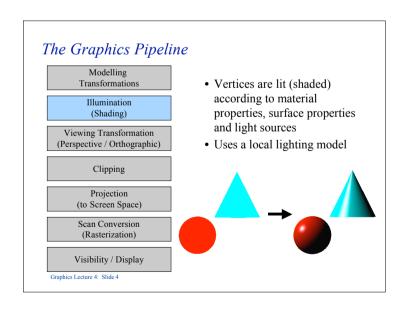
• The Graphics Pipeline: Clipping

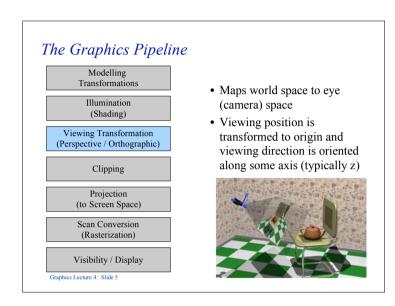
Some slides adopted from F. Durand and B. Cutler, MIT

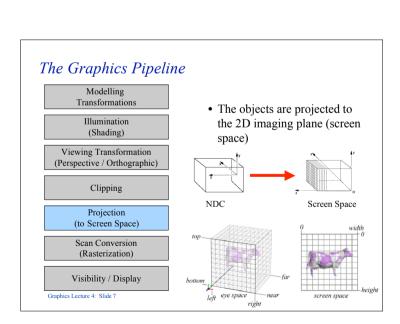
Graphics Lecture 4: Slide 1

The Graphics Pipeline Modelling Transformations • 3D models are defined in their own coordinate system Illumination (Shading) • Modeling transformations orient the models within a Viewing Transformation (Perspective / Orthographic) common coordinate frame (world coordinates) Clipping Projection (to Screen Space) Scan Conversion (Rasterization) Object space World space Visibility / Display Graphics Lecture 4: Slide 3

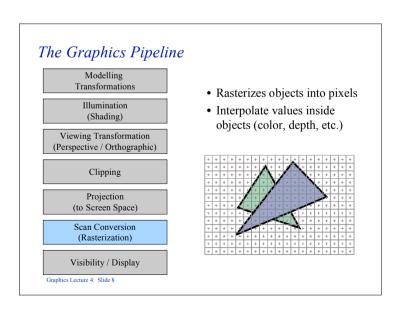








The Graphics Pipeline Modelling Transformations · Transforms to Normalized Device Coordinates Illumination (Shading) • Portions of the scene outside the viewing volume (view frustum) are Viewing Transformation removed (clipped) (Perspective / Orthographic) Clipping Projection (to Screen Space) Eye space NDC Scan Conversion (Rasterization) Visibility / Display Graphics Lecture 4: Slide 6



The Graphics Pipeline

Modelling Transformations

Illumination (Shading)

Viewing Transformation (Perspective / Orthographic)

Clipping

Projection (to Screen Space)

Scan Conversion (Rasterization)

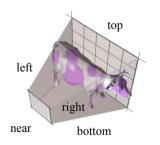
Visibility / Display

Graphics Lecture 4: Slide 9

- Handles occlusions
- Determines which objects are closest and therefore visible

Why clipping?

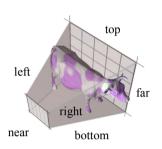
- Avoid degeneracy
 - e.g. don't draw objects behind the camera
- Improve efficiency
 - e.g. do not process objects which are not visisble



Graphics Lecture 4: Slide 11

Clipping

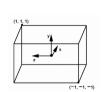
- Eliminate portions of objects outside the viewing frustum
- View frustum
 - boundaries of the image plane projected in 3D
 - a near & far clipping plane
- User may define additional clipping planes

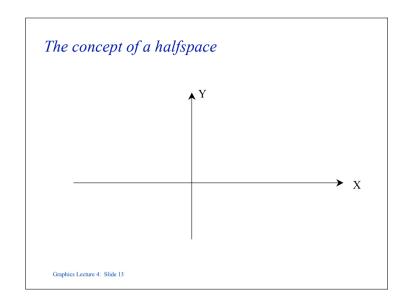


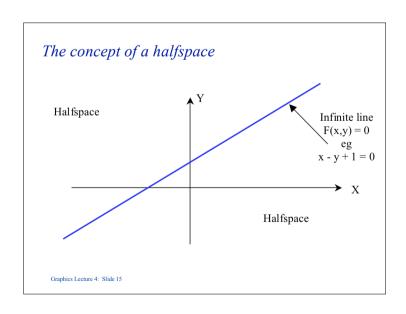
Graphics Lecture 4: Slide 10

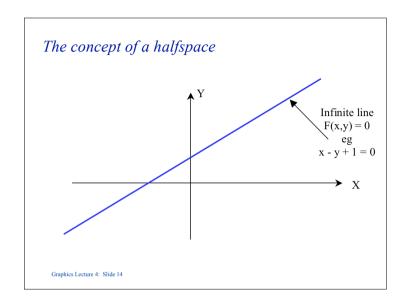
When to clip?

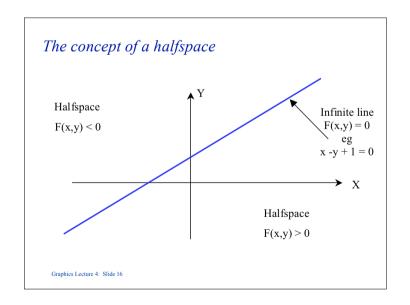
- Before perspective transform in 3D space
 - use the equation of 6 planes
 - natural, not too degenerate
- In homogeneous coordinates after perspective transform (clip space)
 - before perspective divide (4D space, weird w values)
 - canonical, independent of camera
 - simplest to implement
- In the transformed 3D screen space after perspective division
 - problem: objects in the plane of the camera

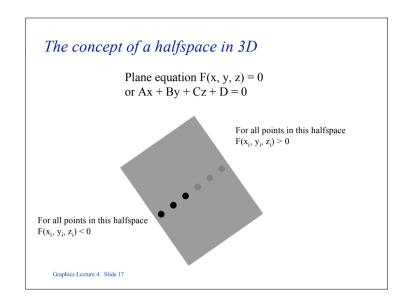










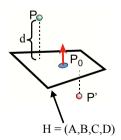


Point-to-Plane Distance

- If (A,B,C) is normalized: d = H•p = H^Tp (the dot product in homogeneous coordinates)
- d is a *signed distance*:

 positive = "inside"

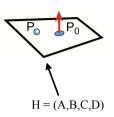
 negative = "outside"



Graphics Lecture 4: Slide 19

Reminder: Homogeneous Coordinates

- Recall:
 - For each point (x,y,z,w)
 there are an infinite number of equivalent homogenous coordinates:
 (sx, sy, sz, sw)

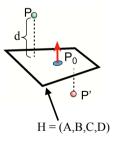


• Infinite number of equivalent plane expressions: $sAx+sBy+sCz+sD=0 \rightarrow H=(sA,sB,sC,sD)$

Graphics Lecture 4: Slide 18

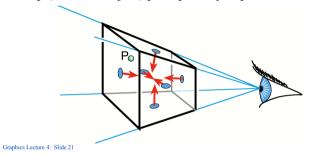
Clipping a Point with respect to a Plane

- If $d = H \cdot p \ge 0$ Pass through
- If $d = H \cdot p < 0$: Clip (or cull or reject)



Clipping with respect to View Frustum

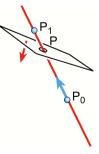
- Test against each of the 6 planes
 - Normals oriented towards the interior
- Clip (or cull or reject) point p if any $H \cdot p < 0$



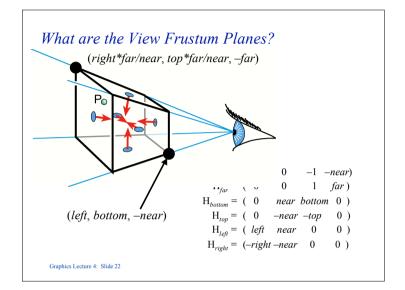
Line – Plane Intersection

- Explicit (Parametric) Line Equation
 - $L(t) = \mathbf{P_0} + \mu \; (\mathbf{P_1} \mathbf{P_0})$
- How do we intersect?

 Insert explicit equation of line into implicit equation of plane or use the normal vector



Graphics Lecture 4: Slide 23

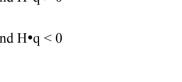


Line – Plane Intersection

- Compute the intersection between the line and plane for any vector \mathbf{p} lying on the plane $\mathbf{n} \cdot \mathbf{p} = 0$
- Let the intersection point be $\mu \mathbf{p_1} + (1-\mu)\mathbf{p_0}$ and assume that \mathbf{v} is a vertex of the object, a vector on the plane is given by $\mu \mathbf{p_1} + (1-\mu)\mathbf{p_0} \mathbf{v}$
- Thus $\mathbf{n} \cdot (\mu \mathbf{p}_1 + (1 \mu) \mathbf{p}_0 \mathbf{v}) = 0$ and we can solve this for μ_i and hence find the point of intersection
- We then replace $\mathbf{p_0}$ with the intersection point

Segment Clipping

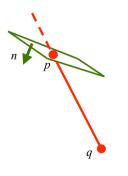
- If $H \cdot p > 0$ and $H \cdot q < 0$
- If $H \cdot p < 0$ and $H \cdot q > 0$
- If $H \cdot p > 0$ and $H \cdot q > 0$
- If $H \cdot p < 0$ and $H \cdot q < 0$



Graphics Lecture 4: Slide 25

Segment Clipping

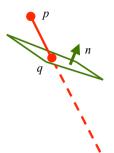
- If $H \cdot p > 0$ and $H \cdot q < 0$ - clip q to plane
- If $H \cdot p < 0$ and $H \cdot q > 0$ - clip p to plane
- If $H \cdot p > 0$ and $H \cdot q > 0$
- If $H \bullet p \le 0$ and $H \bullet q \le 0$



Graphics Lecture 4: Slide 27

Segment Clipping

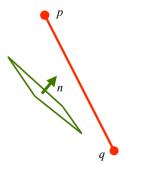
- If $H \cdot p > 0$ and $H \cdot q < 0$ - clip q to plane
- If $H \bullet p < 0$ and $H \bullet q > 0$
- If $H \bullet p > 0$ and $H \bullet q > 0$
- If $H \cdot p < 0$ and $H \cdot q < 0$



Graphics Lecture 4: Slide 26

Segment Clipping

- If $H \bullet p > 0$ and $H \bullet q < 0$
 - clip q to plane
- \bullet If $H \bullet p \leq 0$ and $H \bullet q \geq 0$
 - clip p to plane
- \bullet If $H \bullet p \geq 0$ and $H \bullet q \geq 0$
 - pass through
- \bullet If $H \bullet p \leq 0$ and $H \bullet q \leq 0$



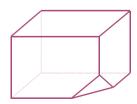
Segment Clipping

- If H•p > 0 and H•q < 0 - clip q to plane
- If $H \cdot p < 0$ and $H \cdot q > 0$ - clip p to plane
- If $H \cdot p > 0$ and $H \cdot q > 0$ pass through
- If $H \bullet p < 0$ and $H \bullet q < 0$ clipped out

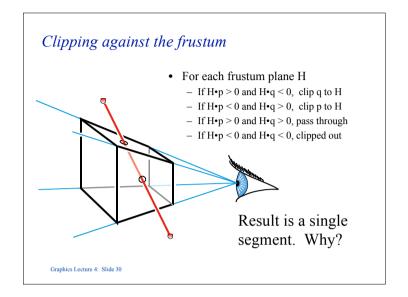
p q

Two Definitions of Convex

- 1. A line joining any two points on the boundary lies inside the object.
- 2. The object is the intersection of planar halfspaces.



Graphics Lecture 4: Slide 31



Algorithm for determining if an object is convex

```
convex = true

for each face of the object

{ find the plane equation of the face F(x,y,z) = 0 choose one object point (x_i,y_i,z_i) not on the face and find sign(F(x_i,y_i,z_i))

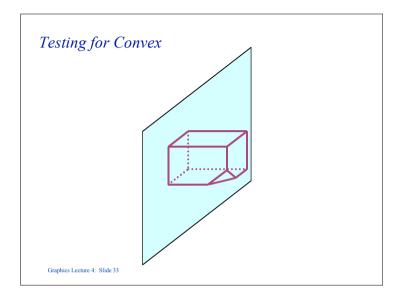
for all other points of the object

{ if (sign(F(x_j,y_j,z_j)) ! = sign(F(x_i,y_i,z_i)))

then convex = false
}

}

Graphics Lecture 4: Slide 32
```



```
Algorithm for Containment

let the test point be (x_t, y_t, z_t) contained = true

for each face of the object

{ find the plane equation of the face F(x,y,z) = 0 choose one object point (x_i, y_i, z_i) not on the face and find sign(F(x_i, y_i, z_i))

if (sign(F(x_t, y_t, z_t)) not = sign(F(x_i, y_i, z_i)))

then contained = false
}
```

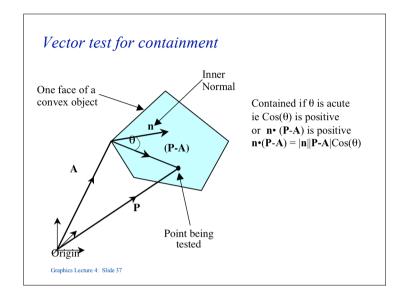
Testing for Containment

- A frequently encountered problem is to determine whether a point is inside an object or not.
- We need this for clipping against polyhedra

Graphics Lecture 4: Slide 34

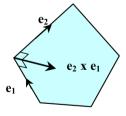
Vector formulation

- The same test can be expressed in vector form.
- This avoids the need to calculate the Cartesian equation of the plane, if, in our model we store the normal **n** vector to each face of our object.



Finding a normal vector

• The normal vector can be found from the cross product of two vectors on the plane, say two edge vectors



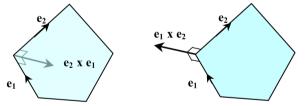
Graphics Lecture 4: Slide 39

Normal vector to a face

• The vector formulation does not require us to find the plane equation of a face, but it does require us to find a normal vector to the plane; same thing really since for plane Ax + By +Cz + D = 0 a normal vector is n = (A, B, C)

Graphics Lecture 4: Slide 38

But which normal vector points inwards?



Concave Objects

- Containment and clipping can also be carried out with concave objects.
- Most algorithms are based on the ray containment test.

Graphics Lecture 4: Slide 46

Calculating intersections with rays

• Rays have equivalent equations to lines, but go in only one direction. For test point T a ray is defined as

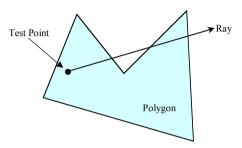
$$\mathbf{R} = \mathbf{T} + \mu \, \mathbf{d} \quad \mu > 0$$

• We choose a simple to compute direction eg

$$\mathbf{d} = [1,0,0]$$

Graphics Lecture 4: Slide 48

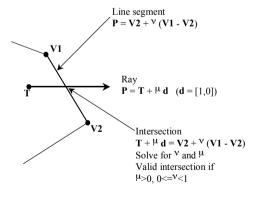
The Ray test in two dimensions



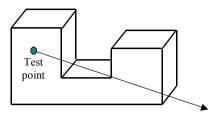
Find all intersections between the ray and the polygon edges. If the number of intersections is odd the point is contained

Graphics Lecture 4: Slide 47

Valid Intersections



Extending the ray test to 3D



A ray is projected in any direction.

If the number of intersections with the object is odd, then the test point is inside

Graphics Lecture 4: Slide 50

The plane of a face

- Unfortunately the plane of a face does not in general line up with the Cartesian axes, so the second part is not a two dimensional problem.
- However, containment is invariant under orthographic projection, so it can be simply reduced to two dimensions.

Graphics Lecture 4: Slide 52

3D Ray test

- There are two stages:
 - 1. Compute the intersection of the ray with the plane of each face.
 - 2. If the intersection is in the positive part of the ray (μ>0) check whether the intersection point is contained in the face.

Graphics Lecture 4: Slide 51

Clipping to concave volumes

- Find every intersection of the line to be clipped with the volume.
- This divides the line into one or more segments.
- Test a point on the first segment for containment
- Adjacent segments will be alternately inside and out.

