Interactive Computer Graphics
Lecture 10: Ray tracing
Girphics Lecturc 10: Slide 1

Direct and Global Illumination

- Direct illumination: A surface point receives light directly from all light sources in the scene.
- Computed by the direct illumination model.
- Global illumination: A surface point receives light after the light rays interact with other objects in the scene.
- Points may be in shadow.
- Rays may refract through transparent material.
- Computed by reflection and transmission rays.

[^0]Albrecht Dürer's Ray Casting Machine

- Albrecht Dürer, $16^{\text {th }}$ century

Ray casting

cast ray
Intersect all objects
color = ambient term
For every light cast shadow ray col += local shading term

Graphics Lecture 10: Slide 7

Arthur Appel, 1968

- On calculating the illusion of reality, 1968
- Cast one ray per pixel (ray casting).
- For each intersection, trace one ray to the light to check for shadows
Only a local illumination mode
- Developed for pen-plotters

Graphics Lecture 10: Slide

Ray Casting

[^1]Turner Whitted, 1980

- An Improved Illumination Model for Shaded Display, 1980
- First global illumination model:
- An object's color is influenced by lights and other objects in the scene
- Simulates specular reflection and refractive transmission

Turner Whitted, 1980

: Slide

Does it ever end?

- Stopping criteria:

- Recursion depth: Stop after a number of bounces
- Ray contribution: Stop if reflected / transmitted contribution becomes too small

1 recursion

2 recursions

Ray tracing: Primary rays

- For each ray we need to test which objects are intersecting the ray:
- If the object has an intersection with the ray we calculate the distance between viewpoint and intersection
- If the ray has more than one intersection, the smallest distance identifies the visible surface.
- Primary rays are rays from the view point to the nearest intersection point
- Local illumination is computed as before:

$$
L=k_{a}+\left(k_{d}(\mathbf{n} \cdot \mathbf{l})+k_{s}(\mathbf{v} \cdot \mathbf{r})^{q}\right) I_{s}
$$

Graphics Lecture 10: Slide 13

Recursive ray tracing: Putting it all together

- Illumination can be expressed as

$$
L=k_{a}+\left(k_{d}(\mathbf{n} \cdot \mathbf{l})+k_{s}(\mathbf{v} \cdot \mathbf{r})^{q}\right) I_{s}+k_{\text {reflected }} L_{\text {reflected }}+k_{\text {refracted }} L_{r e f r a c t e d}
$$

Graphics Lecture 10: Slide 15

Ray tracing: Secondary rays

- Secondary rays are rays originating at the intersection points
- Secondary rays are caused by
- rays reflected off the intersection point in the direction of reflection
- rays transmitted through transparent materials in the direction of refraction
- shadow rays
raphics Lecture 10: Slide 1

Recursive Ray Tracing: Ray Tree

[^2]Precision Problems

Graphics Lecture 10: Slide 17
ε to the rescue...

- Check if t is within some epsilon tolerance:

- if abs $(\mu)<\varepsilon$

- point is on the surface
- else
- point is inside/outside
- Choose the ε tolerance empirically
- Move the intersection point by epsilon along the surface normal so it is outside of the object
- Check if point is inside/outside surface by checking the sign of the implicit (sphere etc.) equation

[^3]
Precision Problems

- In ray tracing, the origin of (secondary) rays is often on the surface of objects
- Theoretically, the intersection point should be on the surface
- Practically, calculation imprecision creeps in, and the origin of the new ray is slightly beneath the surface
- Result: the surface area is shadowing itself
aphics Lecture 10: Slide 1

Mirror reflection

- Compute mirror contribution
- Cast ray in direction symmetric wrt. normal
- Multiply by reflection coefficient (color)

[^4]
Mirror reflection

- Don't for get to add epsilon to the ray

Without epsilon
Graphics Lecture 10: Slide 21
Graphics Lecture 10: Slide 21

With epsilon

Mirror reflection

- To calculate illumination as a result of reflections
- calculate the direction of the secondary ray at the intersection of the primary ray with the object.
- given that
-n is the unit surface normal
$-v$ is the direction of the primary ray
$-v^{\prime}$ is the direction of the secondary ray as a result of reflections

$$
\mathbf{v}^{\prime}=\mathbf{v}-(\mathbf{2 v} \cdot \mathbf{n}) \mathbf{n}
$$

Mirror reflection

Mirror reflection

The $\mathbf{v}, \mathbf{v}^{\prime}$ and \mathbf{n} are unit vectors and coplanar so:

$$
\mathbf{v}^{\prime}=\alpha \mathbf{v}+\beta \mathbf{n}
$$

Taking the dot product with \mathbf{n} yields the eq.:

$$
\mathbf{n} \cdot \mathbf{v}^{\prime}=\alpha \mathbf{v} \cdot \mathbf{n}+\beta=\mathbf{v} \cdot \mathbf{n}
$$

Requiring v ' to be a unit vector yields the second eq.:

$$
1=\mathbf{v}^{\prime} \cdot \mathbf{v}^{\prime}=\alpha^{2}+2 \alpha \beta \mathbf{v} \cdot \mathbf{n}+\beta^{2}
$$

- Solving both equations yields:

$$
\mathbf{v}^{\prime}=\mathbf{v}-(\mathbf{2 v} \cdot \mathbf{n}) \mathbf{n}
$$

Transparency

- Compute transmitted contribution
- Cast ray in refracted direction
- Multiply by transparency coefficient

Graphics Lecture 10: Slide 25

Refraction

- The angle of the refracted ray can be determined by Snell's law:

$$
k_{1} \sin \left(\phi_{1}\right)=k_{2} \sin \left(\phi_{2}\right)
$$

- η_{l} is a constant for medium 1
- η_{2} is a constant for medium 2
- ϕ_{I} is the angle between the incident ray and the surface normal
- ϕ_{2} is the angle between the refracted ray and the surface normal

Graphics Lecture 10: Slide 2

Refraction

- This equation only has a solution if

$$
(\mathbf{n} \cdot \mathbf{v})^{2}>1-\left(\frac{\eta_{2}}{\eta_{1}}\right)^{2}
$$

- This illustrates the physical phenomenon of the limiting angle:
- if light passes from one medium to another medium whose index of refraction is low, the angle of the refracted ray is greater than the angle of the incident ray
- if the angle of the incident ray is large, the angle of the refracted ray is larger than 90°
- the ray is reflected rather than refracted

[^5]
Refraction

- Make sure you know whether you are entering or leaving the transmissive material

Graphics Lecture 10: Slide 29

Amount of reflection and refraction

- Traditional (hacky) ray tracing
- Constant coefficient reflectionColor
- Component per component multiplication
- Better: Mix reflected and refracted light according to the Fresnel factor

$$
L=k_{\text {fresnel }} L_{\text {reflected }}+\left(1-k_{\text {fresnel }}\right) L_{\text {refracted }}
$$

Fresnel factor

[^6]Schlick's Approximation

- Schlick's approximation
$k_{\text {fresnel }}(\theta)=k_{\text {fresnel }}(0)+\left(1-k_{\text {fresnel }}(0)\right)(1-(\mathbf{n} \cdot \mathbf{l}))^{5}$
- $k_{\text {fresnel }}(0)=$ Fresnel factor at zero degrees
- Choose $k_{\text {fresnel }}(0)=0.8$, this will look like stainless steel

How do we add shadows?

Example

How do we add shadows?

$$
L=k_{a}+s\left(k_{d}(\mathbf{n} \cdot \mathbf{l})+k_{s}(\mathbf{v} \cdot \mathbf{r})^{q}\right) I_{s}+k_{\text {reflected }} L_{\text {reflected }}+k_{\text {refracted }} L_{\text {refracted }}
$$

$$
s= \begin{cases}0 & \text { if light source is obscured } \\ 1 & \text { if light source is not obscured }\end{cases}
$$

Graphics Lecture 10: Slide 36

Shadows: Problems?

- Make sure to avoid self-shadowing

Graphics Lecture 10: Slide 37

Example

Reflection: Conventional ray tracing

- One reflection per intersection

Reflection: Monte Carlo ray tracing

- Random reflection rays around mirror direction

Reflection: Conventional ray tracing

- How can we create effects like this?

Graphics Lecture 10: Slide 4.

Glossy surfaces

Graphics Lecture 10: Slide 44

Ray tracing

- Cast a ray from the eye through each pixel
- Trace secondary rays (light, reflection, refraction)

Graphics Lecture 10: Slide 45

Monte-Carlo Ray Tracing

- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
- Recurse

[^7]
Monte-Carlo Ray Tracing

- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
- Accumulate radiance contribution

Monte-Carlo Ray Tracing

- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
- Recurse

Graphics Lecture 10: Slide 48

Monte Carlo Path Tracing

- Trace only one secondary ray per recursion
- But send many primary rays per pixel

Example

- 1 sample per pixel

Monte Carlo Ray Tracing

- Send rays to light

[^8]
Example

- 256 samples per pixel

Some cool pictures

Some cool pictures

Some cool pictures

Some cool pictures

Graphics Lecture 10: Slide 57
took 4.5 days to render!

[^0]: Graphics Lecture 10: Slide 4

[^1]: Graphics Lecture 10: Slide 8

[^2]: R_{i} reflected ray
 L_{i} shadow ray
 T_{i} transmitted (refracted) ray

[^3]: Graphics Lecture 10: Slide 19

[^4]: Graphics Lecture 10: Slide 20

[^5]: Graphics Lecture 10: Slide 28

[^6]: Graphics Lecture 10: Slide 3

[^7]: Graphics Lecture 10: Slide 47

[^8]: Graphis Lecture 10: Slides

