Interactive Computer Graphics

Lecture 10: Ray tracing

Graphics Lecture 10: Slide 1

Some slides adopted from H. Pfister, Harvard

Direct and Global Illumination

- <u>Direct illumination:</u> A surface point receives light directly from all light sources in the scene.
 - Computed by the direct illumination model.
- <u>Global illumination:</u> A surface point receives light after the light rays interact with other objects in the scene.
 - Points may be in shadow.
 - Rays may refract through transparent material.
 - Computed by reflection and transmission rays.

Albrecht Dürer's Ray Casting Machine

• Albrecht Dürer, 16th century

Arthur Appel, 1968

- On calculating the illusion of reality, 1968
- Cast one ray per pixel (ray casting).
 - For each intersection, trace one ray to the light to check for shadows
 - Only a local illumination model
- Developed for pen-plotters

Graphics Lecture 10: Slide 6

Ray casting

cast ray

Graphics Lecture 10: Slide 7

Ray Casting

Turner Whitted, 1980

- An Improved Illumination Model for Shaded Display, 1980
- First global illumination model:
 - An object's color is influenced by lights and other objects in the scene
 - Simulates specular reflection and refractive transmission

Graphics Lecture 10: Slide 9

Turner Whitted, 1980 Graphics Lecture 10: Slide 10

- Stopping criteria:
 - Recursion depth: Stop after a number of bounces
 - Ray contribution: Stop if reflected / transmitted contribution becomes too small

0 recursion

1 recursion

2 recursions

Ray tracing: Primary rays

- For each ray we need to test which objects are intersecting the ray:
 - If the object has an intersection with the ray we calculate the distance between viewpoint and intersection
 - If the ray has more than one intersection, the smallest distance identifies the visible surface.
- Primary rays are rays from the view point to the nearest intersection point
- Local illumination is computed as before:

$$L = k_a + (k_d(\mathbf{n} \cdot \mathbf{l}) + k_s(\mathbf{v} \cdot \mathbf{r})^q)I_s$$

Graphics Lecture 10: Slide 13

Recursive ray tracing: Putting it all together

• Illumination can be expressed as

$$L = k_a + (k_a(\mathbf{n} \cdot \mathbf{l}) + k_s(\mathbf{v} \cdot \mathbf{r})^q)I_s + k_{reflected}L_{reflected} + k_{refracted}L_{refracted}$$

Graphics Lecture 10: Slide 15

Ray tracing: Secondary rays

- Secondary rays are rays originating at the intersection points
- Secondary rays are caused by
 - rays reflected off the intersection point in the direction of reflection
 - rays transmitted through transparent materials in the direction of refraction
 - shadow rays

Precision Problems

Graphics Lecture 10: Slide 17

ε to the rescue ...

- Check if t is within some epsilon tolerance:
 - $-if abs(\mu) < \varepsilon$
 - point is on the surface
 - else
 - point is inside/outside
 - Choose the ε tolerance empirically
- Move the intersection point by epsilon along the surface normal so it is outside of the object
- Check if point is inside/outside surface by checking the sign of the implicit (sphere etc.) equation

Graphics Lecture 10: Slide 19

Precision Problems

- In ray tracing, the origin of (secondary) rays is often on the surface of objects
 - Theoretically, the intersection point should be on the surface
 - Practically, calculation imprecision creeps in, and the origin of the new ray is slightly beneath the surface
- Result: the surface area is shadowing itself

Graphics Lecture 10: Slide 18

Mirror reflection

- Compute mirror contribution
- Cast ray in direction symmetric wrt. normal
- Multiply by reflection coefficient (color)

Mirror reflection

• Don't for get to add epsilon to the ray

Mirror reflection

- To calculate illumination as a result of reflections
 - calculate the direction of the secondary ray at the intersection of the primary ray with the object.
- given that
 - n is the unit surface normal
 - v is the direction of the primary ray
 - $-\,v^{\prime}$ is the direction of the secondary ray as a result of reflections

$$\mathbf{v'} = \mathbf{v} - (2\mathbf{v} \cdot \mathbf{n})\mathbf{n}$$

Graphics Lecture 10: Slide 23

Mirror reflection

Graphics Lecture 10: Slide 22

Mirror reflection

The **v**, **v**' and **n** are unit vectors and coplanar so:

$$\mathbf{v'} = \alpha \mathbf{v} + \beta \mathbf{n}$$

Taking the dot product with **n** yields the eq.:

$$\mathbf{n} \cdot \mathbf{v'} = \alpha \mathbf{v} \cdot \mathbf{n} + \beta = \mathbf{v} \cdot \mathbf{n}$$

Requiring v' to be a unit vector yields the second eq.:

$$1 = \mathbf{v' \cdot v'} = \alpha^2 + 2 \alpha \beta \mathbf{v \cdot n} + \beta^2$$

• Solving both equations yields:

$$\mathbf{v'} = \mathbf{v} - (2\mathbf{v} \cdot \mathbf{n})\mathbf{n}$$

Transparency

- Compute transmitted contribution
- Cast ray in refracted direction
- Multiply by transparency coefficient

Graphics Lecture 10: Slide 25

Refraction

• In vector notation Snell's law can be written:

$$k_1(\mathbf{v} \times \mathbf{n}) = k_2(\mathbf{v}' \times \mathbf{n})$$

• The direction of the refracted ray is

$$\mathbf{v}' = \frac{\eta_1}{\eta_2} \left[\sqrt{(\mathbf{n} \cdot \mathbf{v})^2 + \left(\frac{\eta_2}{\eta_1}\right)^2 - 1} - \mathbf{n} \cdot \mathbf{v} \right] \cdot \mathbf{n} + \mathbf{v}$$

Graphics Lecture 10: Slide 27

Refraction

• The angle of the refracted ray can be determined by Snell's law:

$$k_1 \sin(\phi_1) = k_2 \sin(\phi_2)$$

- η_i is a constant for medium 1
- η_2 is a constant for medium 2
- φ_I is the angle between the incident ray and the surface normal
- ϕ_2 is the angle between the refracted ray and the surface normal

Graphics Lecture 10: Slide 26

Refraction

• This equation only has a solution if

$$(\mathbf{n} \cdot \mathbf{v})^2 > 1 - \left(\frac{\eta_2}{\eta_1}\right)^2$$

- This illustrates the physical phenomenon of the limiting angle:
 - if light passes from one medium to another medium whose index of refraction is low, the angle of the refracted ray is greater than the angle of the incident ray
 - if the angle of the incident ray is large, the angle of the refracted ray is larger than $90^{\rm o}$
 - → the ray is reflected rather than refracted

Refraction

• Make sure you know whether you are entering or leaving the transmissive material

Graphics Lecture 10: Slide 29

Amount of reflection and refraction

- Traditional (hacky) ray tracing
 - Constant coefficient reflectionColor
 - Component per component multiplication
- Better: Mix reflected and refracted light according to the Fresnel factor.

$$L = k_{\textit{fresnel}} L_{\textit{reflected}} + (1 - k_{\textit{fresnel}}) L_{\textit{refracted}}$$

Graphics Lecture 10: Slide 30

Fresnel factor

• More reflection at grazing angle

Schlick's Approximation

• Schlick's approximation

$$k_{fresnel}(\theta) = k_{fresnel}(0) + (1 - k_{fresnel}(0))(1 - (\mathbf{n} \cdot \mathbf{l}))^{5}$$

- $k_{fresnel}(0)$ = Fresnel factor at zero degrees
- Choose $k_{fresnel}(0) = 0.8$, this will look like stainless steel

Graphics Lecture 10: Slide 33

How do we add shadows? Graphics Lecture 10: Slide 35

Graphics Lecture 10: Slide 43

Reflection: Conventional ray tracing

• How can we create effects like this?

Ray tracing

- Cast a ray from the eye through each pixel
- Trace secondary rays (light, reflection, refraction)

Graphics Lecture 10: Slide 45

Monte-Carlo Ray Tracing

- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
- Recurse

Monte-Carlo Ray Tracing

- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
 - Accumulate radiance contribution

Monte-Carlo Ray Tracing

- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
- Recurse

Monte Carlo Path Tracing

- Trace only one secondary ray per recursion
- But send many primary rays per pixel

Some cool pictures

Graphics Lecture 10: Slide 53

Some cool pictures

Some cool pictures

Graphics Lecture 10: Slide 55

Some cool pictures

Some cool pictures

Graphics Lecture 10: Slide 57

took 4.5 days to render!