
Lecture 13: Computational Issues in Radiosity

The radiosity method has stages that require intensive use of cpu time, and involve approximate
methods that can lead to unwanted visual artefacts. The problems that are associated with each stage of
the method are sumarised as follows:

1. Divide the graphics world into discrete patches
Meshing strategies, meshing errors

2. Compute form factors by the hemicube method
Alias errors

3. Solve the matrix equation for the radiosity of each patch.
Computational strategies

4. Average the radiosity values at the corners of each patch
Interpolation approximations

5. Compute a texture map of each point or render directly
At least this stage is relatively easy

Alias Errors
Computation of the form factors will involve alias errors. These are equivalent to those errors

that occur in texture mapping, due to discrete sampling of a continuous environment. However, these
errors are perhaps the least of the problems we will encounter. Errors in the form factors are a
secondary effect, as each patch radiosity will be determined by a large number of other patches. Thus
each form factor will make only a small contribution to the result. The alias errors can be reduced, if
necessary, by increasing the sampling of the hemi-cube, but this in turn puts up the computational
demand.

Form Factor Computation
Form factors have a reciprocal relationship:

 Fij = cos icos j Area(Aj) / r2

 Fji = cos icos j Area(Ai) / r2

 Fji = Fij*Area(Aj) /Area(Ai)
Thus, providing we can store the form factors only half the patches need be computed. However, the
number of form factors will be very large, and in early solutions for radiosity it was not possible to pre-
compute and save them. To give an idea of the size of the problem, we note that for 60,000 patches,
there are 3,600,000,000 form factors. We only need to store half of these (reciprocity), but we will need
four bytes for each, hence 7Gbytes are needed. This memory requirement is going up with the square
of the number of patches. As many of them are zero we can save space by using an indexing scheme.
An index could be created with one bit per form factor. If a bit is zero this implies that the form factor
zero and not stored. All non zero form factors can be stored in a one dimensional array. Using such a
scheme reduces the storage requirement, possibly to one quarter. However, it is easy to conceive of
scenes where it is not possible to pre-compute and store the form factors.

Matrix Inversion
Inverting the matrix can be done by the Gauss Siedel method. This is not really a matrix

method as such, but rather an iterative scheme based on the form factor equations. Each patch equation
has the form:

Bi = Ei + Ri Bj Fij

We use the iteration
Bi

k = Ei + Ri Bj
k-1 Fij

DOC: Interactive Computer Graphics Lecture 13 Page: 1

The initial values, Bi0, may be set to zero. At the first iteration the emitted light energy is distributed to
those patches that are illuminated, in the next cycle, those patches illuminate others and so on. The
Gauss Siedel inversion is stable and converges fast since the Ei terms are constant and correct at every
iteration, and all Bi values are positive.

Progressive refinement
The nature of the Gauss Siedel method allows a partial solution to be rendered as the

computation proceeds. Without altering the method we could render the image after each iteration,
allowing the designer to stop the process and make corrections quickly. This may be particularly
important if the scene is so large that we need to re-calculate the form factors every time we need
them.

If the image is progressively refined in this way, it will start dark and gradually illuminate as the
iterations proceed. For this reason it is sometimes thought advantageous to add in a constant ambient
term which is reduced as each iterative epoch is completed.

Shooting and Gathering
The Gauss Siedel inversion can be modified to make it faster by making use of the fact that it is

essentially distributing energy around the scene. By choosing a good order of evaluation we can
improve the quality of a partial solution and reduce the number iterations required for convergence.

The evaluation of one B value using one row of the
matrix in the normal Gauss Siedel way is like a
process of gathering. The value of B is estimated
from the B values of all the other patches:
 Bi

k = Ei + Ri Bj
k-1 Fij

Suppose, in one iteration, Bi changes by Bi. Every
other patch in the scene will change (providing its
form factor is not zero). The magnitude of this
change can be written:
 Bj = Rj Fji Bi

Which can be simply changed into an iterative updating scheme:
 Bj

k = Bj
k-1 + Rj Fji Bi

k-1

This is the process of shooting, and is equivalent to evaluating the matrix column wise. The use of
shooting allows us to choose an evaluation order that ensures fastest convergence. The patches with the
largest change B (called the unshot radiosiy)
are distributed first. In an iteration, the unshot
radiosity of a chosen patch is reduced to zero,
and that of other patches is incrementally
increased. The process starts by shooting the
emitting patches, since at the first iteration Bi
= Ei.

Interpolation Strategies
Visual artefacts do occur with

interpolation strategies, but may not be
significant for small patches. Diagram 2
illustrates the different interpolation strategies

DOC: Interactive Computer Graphics Lecture 13 Page: 2

Shooting Patch Gathering Patch

Diagram 1: Shooting and Gathering

 Patch
1

Patch
3

Patch
2

True
Radiosity

Computed
Radiosity
Linear Interpolation
(Gouraud)

Cubic
Interpolation

Diagram 2: Interpolation Strategies

and the results they will produce. As noted previously the computed values alone will produce
undesirable visual artefacts. However, the use of a cubic interpolation scheme, though more accurate
than a purely linear scheme, will probably not produce any significant improvement.

Meshing
Meshing is the process of dividing

the scene into patches, and causes the
worst problems in terms of visual quality.
Meshing artefacts are scene dependent.
The most obvious are called D0 artefacts,
and are caused by caused by
discontinuities in the radiosity function.
These could be due to shadows or to
surface albedo (ratio of incident to
reflected light) or texture. Discontinuities
of this kind cause problems when
accompanied by bad patching. Diagram 3
illustrates the problem. Here a single

polygon is divided into regular square patches. A shadow boundary crosses, resulting in a serious
visual alias in the computed radiosity. Interpolation will reduce the visual effect of the alias, but will
smooth out the hard edge of the shadow.

Discontinuity Meshing (a priori)
The idea behind discontinuity meshing is to compute discontinuities in advance, and align the

patches with them. Additionally, the discontinuities are made known to the interpolation procedure so
that hard boundaries are not smoothed out. Many of the discontinuities are scene dependent. These in
particular will include object boundaries, which we would naturally expect to be patch boundaries as
well, and albedo discontinuities, possibly specified in texture maps. Shadows can also be determined,
and this can be done to a process similar to ray tracing. Books contain a lot of algorithmic detail on
this subject, but we will not cover it here.

Adaptive Meshing (a posteriori)
The idea of adaptive meshing is to recompute

the mesh as the radiosity calculation proceeds. Places
where there are strong discontinuities in the radiosity
can be found by comparing values at adjacent patches.
There are essentially two approaches:

(i) put more patches (elements) into areas with
high discontinuity or

(ii) move the mesh boundary to coincide with
the greatest change.

Subdivision of Patches (h refinement)
Using the h-refinement method w compute the

radiosity at the vertices of the coarse grid of patches. If
the discontinuities exceed a threshold we subdivide the
patch into elements, and recompute those elements.
They can be checked for discontinuity and subdivided

DOC: Interactive Computer Graphics Lecture 13 Page: 3

 Polygon

Patches
Shadow
Boundary

Computed radiosity

Patches incorrectly
rendered
(even after interpolation)

Diagram 3: D0 Meshing Problems

 Original coarse patches

h-refinement elements

Diagram 4:
Adaptive meshing by h-refinement

further. When a patch is divided into elements the radiosity of each element is computed using the
original radiosity solution for all other patches. The assumptions behind this are that:

(i) the radiosity of a patch is equal to the sum of the radiosity of its elements, and,
(ii) the distribution of radiosities among elements of a patch do not affect the global solution
significantly

These assumptions are a reasonable, and they save re-computing the complete radiosity solution after
each subdivision.

Patch Refinement (r refinement)
Here we compute the radiosity at the vertices of the
coarse grid, and move the patch boundaries closer
together if they have high radiosity changes. Unlike
the h-refinement solution it is necessary to recompute
the entire radiosity solution each refinement. However
the method should make more efficient use of patches
by shaping them correctly. Hence a smaller number of
patches could be used. In diagram 5 we see that the
uniform patches tend to get larger, and the ones around
the discontinuities tend to get smaller, hence some
other forms of re-patching may be required as the
algorithm proceeds.

Adding Specularities
We noted that specularities (being viewpoint
dependent) cannot be calculated by the standard
radiosity method. However, they do form an important
aspect of visual realism, and it is desirable to add them
where possible. This can be done after the radiosity
solution has been obtained, by means of ray tracing. The complete ray tracing solution is not required,
just the specular component in the viewpoint direction. Thus only one primary ray per pixel and one
secondary ray in the reflected direction are required to achieve this. Further ray tracing can be used to
enhance radiosity solutions with effects such as reflections and translucency.

DOC: Interactive Computer Graphics Lecture 13 Page: 4

 Original patches

Refined patches

Diagram 5:
Adaptive Meshing using r-refinement

