Interactive Computer Graphics

- Lecture 14+15: Warping and Morphing

Lecture 14: Warping and Morphing: Slide 1

Warping and morphing

Lecture 14: Warping and Morphing: Slide 2

Warping and Morphing

- What is
- warping ?
- morphing ?

Lecture 14: Warping and Morphing: Slide 4

Warping

- The term warping refers to the geometric transformation of graphical objects (images, surfaces or volumes) from one coordinate system to another coordinate system.
- Warping does not affect the attributes of the underlying graphical objects.
- Attributes may be
- color (RGB, HSV)
- texture maps and coordinates
- normals, etc.

Lecture 14: Warping and Morphing: Slide 5

Morphing

- The term morphing stands for metamorphosing and refers to an animation technique in which one graphical object is gradually turned into another.
- Morphing can affect both the shape and attributes of the graphical objects.

Morphing $=$ Object Averaging

- The aim is to find "an average" between two objects
- Not an average of two images of objects..
- ...but an image of the average object!
- How can we make a smooth transition in time?
- Do a "weighted average" over time t
- How do we know what the average object looks like?
- Need an algorithm to compute the average geometry and appearance

- Interpolate whole images:

$$
\mathrm{I}(\mathrm{t})=\mathrm{t} * \mathrm{I}_{1}+(1-\mathrm{t}) * \mathrm{I}_{2}
$$

- This is called cross-dissolve
- But what is the images are not aligned?

Lecture 14: Warping and Morphing: Slide

Image warping

- image filtering: change range of image

- image warping: change domain of image

Morphing using warping and cross-dissolve

- Align first, then cross-dissolve

Lecture 14: Warping and Morphing: Slide 1

Image warping

- image filtering: change range of image
- $g(x)=h(T(x))$

- image warping: change domain of image

Lecture 14: Warping and Morphing: Slide 12

Parametric (global) warping

- Examples of parametric warps:

Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for al components:

Parametric (global) warping

- Transformation T can be expressed as a mapping:

$$
\mathrm{p}^{\prime}=T(\mathrm{p})
$$

- Transformation T can be expressed as a matrix:

$$
\begin{aligned}
\mathrm{p}^{\prime} & =\mathbf{M}^{*} \mathrm{p} \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right] } & =\mathbf{M}\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

Lecture 14: Wapping and Morphing: Slide 14

Scaling

- Non-uniform scaling: different scalars per component:

Lecture 14: Warping and Morphing: Slide 16

Scaling

- Scaling operation:

$$
\begin{aligned}
& x^{\prime}=a x \\
& y^{\prime}=b y
\end{aligned}
$$

- Or, in matrix form:

scaling matrix S
What is the inverse of S ?
Lecture 14: Warping and Morphing: Slide 17

2-D Rotation

2-D Rotation

$x=r \cos (\phi)$
$y=r \sin (\phi)$
$x^{\prime}=r \cos (\phi+\theta)$
$y^{\prime}=r \sin (\phi+\theta)$
Trig Identity..
$\mathrm{x}^{\prime}=\mathrm{r} \cos (\phi) \cos (\theta)-\mathrm{r} \sin (\phi) \sin (\theta)$
$y^{\prime}=r \sin (\phi) \sin (\theta)+r \cos (\phi) \cos (\theta)$
Substitute...
$\mathrm{x}^{\prime}=\mathrm{x} \boldsymbol{\operatorname { c o s }}(\theta)-\mathrm{y} \boldsymbol{\operatorname { s i n }}(\theta)$
$y^{\prime}=x \boldsymbol{\operatorname { s i n }}(\theta)+y \cos (\theta)$

2-D Rotation

- This is easy to capture in matrix form:

- Even though $\sin (\theta)$ and $\cos (\theta)$ are nonlinear functions of θ, $-x$ ' is a linear combination of x and y
- y^{\prime} is a linear combination of x and y
-What is the inverse transformation?
- Rotation by $-\theta$
- For rotation matrices, $\operatorname{det}(\mathrm{R})=1$ so $\mathbf{R}^{-1}=\mathbf{R}^{T}$

Lecture 14: Warping and Morphing: Slide 20

2x2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Identity?

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Scale around (0,0)?

Lecture 14: Warping and Mopphing: Slide 2

2×2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Rotate around (0,0)?

$$
\begin{aligned}
& x^{\prime}=\cos \Theta^{*} x-\sin \Theta^{*} y \\
& y^{\prime}=\sin \Theta^{*} x+\cos \Theta^{*} y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \Theta & -\sin \Theta \\
\sin \Theta & \cos \Theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Shear?

$$
\begin{aligned}
& x^{\prime}=x+s h_{x} * y \\
& y^{\prime}=s h_{y} * x+y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & s h_{x} \\
s h_{y} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Lecure 14: Wapping and Morphing: Slide 22

2×2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Translation?

$$
x^{\prime}=x+t_{x} \quad \text { NO! }
$$

$$
y^{\prime}=y+t_{y}
$$

Only linear 2D transformations can be represented with a 2×2 matrix

[^0]
All 2D Linear Transformations

- Linear transformations are combinations of ...
- Scale,
- Rotation,
- Shear, and
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
- Properties of linear transformations:
- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$
\text { Lecture 14: Warping and Morphing: Slide 25 }\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Basic 2D Transformations

- Basic 2D transformations as 3×3 matrices
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{llc}1 & 0 & t_{x}\end{array}\right]\left[\begin{array}{l}x \\ 0\end{array} 1\right.$
Translate
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{ccc}s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
Scale

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Rotate
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{ccc}1 & s h_{x} & 0 \\ s h_{y} & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
Shear

Homogeneous Coordinates

- Q: How can we represent translation as a matrix transformation?

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

- A: Using the translation parameters as the rightmost column:

$$
\mathbf{T}=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Lecture 14: Warping and Morphing: Slide 26

2 D image transformations

Lecture 14: Wapping and Morphing: Slide 28

Transformations

- Dimensions of transformation
- 1D: curves
-2D: images
- 3D: volumes
- Types of transformations
- rigid
- affine
- polynomial
- quadratic
- cubic
- splines
cecture 14: Warping and Morphing: Slide

Transformations in 3D: Rigid

- Rigid transformation (6 degrees of freedom)
$\left(\begin{array}{c}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right)=\left(\begin{array}{cccc}r_{01} & r_{02} & r_{03} & t_{x} \\ r_{11} & r_{12} & r_{13} & t_{y} \\ r_{21} & r_{22} & r_{23} & t_{z} \\ 0 & 0 & 0 & 1\end{array}\right) \cdot\left(\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right)=T_{\text {rigid }}^{x} \cdot T_{\text {rigid }}^{y} \cdot T_{\text {rigid }}^{z} \cdot\left(\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right)+\left(\begin{array}{c}t_{x} \\ t_{y} \\ t_{z} \\ 0\end{array}\right)$
- $\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}, \mathrm{t}_{\mathrm{z}}$ describe the 3 translations in x, y and z
- r_{11}, \ldots, r_{33} describe the 3 rotations around x, y, z

Lecture 14: Wapping and Morphing. Slide 30

Transformations in 3D: Rigid

$\mathbf{T}_{\text {rigid }}^{x}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \quad \mathbf{T}_{\text {rigid }}^{v}=\left(\begin{array}{cccc}\cos \alpha & 0 & \sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
$\mathbf{T}_{r \text { rigid }}^{z}=\left(\begin{array}{cccc}\cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
Lecture 14 : Wapping and Mophing: Slide 31

Transformations in 3D: Affine

- Affine transformations (12 degrees of freedom)

$$
\begin{gathered}
\mathbf{T}_{\text {scale }}=\left(\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{T}_{\text {shear }}^{x y}=\left(\begin{array}{cccc}
1 & 0 & s h_{x} & 0 \\
0 & 1 & s h_{y} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
\mathbf{T}(x, y, z)=\mathbf{T}_{\text {shar }} \cdot \mathbf{T}_{\text {scale }} \cdot \mathbf{T}_{\text {rigid }} \cdot\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
\end{gathered}
$$

Lecture 14: Warping and Morphing: Slide 32

Non-rigid transformations

- Quadratic transformation (30 degrees of freedom)

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
r_{00} & \cdots & r_{08} & r_{09} \\
r_{10} & \cdots & r_{18} & r_{19} \\
r_{20} & \cdots & r_{28} & r_{29} \\
0 & \cdots & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x^{2} \\
y^{2} \\
\vdots \\
1
\end{array}\right)
$$

Lecture 14: Warping

Non-rigid transformations

- Can be extended to other higher-order polynomials:
- $3^{\text {rd }}$ order (60 DOF)
$-4^{\text {th }} \operatorname{order}(105$ DOF $)$
- $5^{\text {th }}$ order (168 DOF)
- Problems:
- can model only global shape changes, not local shape changes
- higher order polynomials introduce artifacts such as oscillations

Image warping

- Given a coordinate transform $\left(x^{\prime}, y^{\prime}\right)=\mathrm{T}(x, y)$ and a source image $f(x, y)$, how do we compute a transformed image $g\left(x^{\prime}, y^{\prime}\right)=f(\mathrm{~T}(x, y))$?

Lecture 14: Warping and Morphing: Slide 35

Forward warping

- Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=\mathrm{T}(x, y)$ in the second image

Lecture 14: Warping and Morphing: Slide 36

Forward warping

- Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=$ $T(x, y)$ in the second image
Q : what if pixel lands "between" two pixels?

Lecture 14: Warping and Mopphing: Slide 3

Forward warping

- Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=\mathrm{T}(x, y)$ in the second image
Q: what if pixel lands "between" two pixels?
A: distribute color among neighboring pixels ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$) - known as "splatting"

Lecture 14: Warping and Morphing: Slide 38

Inverse warping

- Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=\mathrm{T}^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image
Q: what if pixel comes from "between" two pixels?

Inverse warping

- Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=\mathrm{T}^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image
Q: what if pixel comes from "between" two pixels?
A: Interpolate color value from neighbors - nearest neighbor, bilinear, Gaussian, bicubic

Lecture 14: Warping and Morphing: Slide 41

Interpolation

Lecture 14: Warping and Morphing: Slide 42

Interpolation: Linear, $2 D$

$$
f(p)=\sum_{i=0}^{n-1} w_{i} f\left(p_{i}\right)
$$

$$
\begin{aligned}
& w_{0}=(1-r)(1-s) \\
& w_{1}=r(1-s) \\
& w_{2}=(1-r) s \\
& w_{3}=r s
\end{aligned}
$$

Non-rigid transformations

Lecture 14: Warping and Morphing: Slide 46

Non-rigid transformations: Correspondences

Lecture 14: Warping and Morphing: Slide 47

Non-rigid transformations: Correspondences

[^1]
Feature-Based Warping: Beier-Neeley

- Beier \& Neeley use pairs of lines to specify warp - Given \mathbf{p} in destination image, where is \mathbf{p} ' in source image?

u is a fraction
Destination image v is a length (in pixels)

Lecture 14: Warping and Morphing: Slide 4

Feature-Based Warping: Beier-Neeley

$$
\begin{gathered}
u=\frac{(p-x) \cdot(y-x)}{\|y-x\|^{2}} \quad v=\frac{(p-x) \cdot \operatorname{Perpendicular}(y-x)}{\|y-x\|} \\
p^{\prime}=x+u \cdot\left(y^{\prime}-x^{\prime}\right)+\frac{v \cdot \operatorname{Perpendicular}\left(y^{\prime}-x^{\prime}\right)}{\left\|y^{\prime}-x^{\prime}\right\|}
\end{gathered}
$$

is a fraction v is a length (in pixels)

Lecture 14: Warping and Morphing: Slide 50

Warping with One Line Pair: Beier-Neeley

- What happens to the "F"?

Translation!
Lecture 14: Warping and Morphing: Slide 52

Warping with One Line Pair (cont.): Beier-Neeley

- What happens to the "F"?

Scale!
Lecture 14: Warping and Mopphing: Slide 5

Warping with One Line Pair (cont.): Beier-Neeley

- What happens to the "F"?

In general, similarity transformations
Lecture 14: Warping and Morphing: Slide 55

Warping with One Line Pair (cont.): Beier-Neeley

- What happens to the " F "?

Rotation!
Lecture 14: Warping and Morphing: Slide 54

Warping with Multiple Line Pairs: Beier-Neeley

- Use weighted combination of points defined each pair of corresponding lines

[^2]Warping with Multiple Line Pairs: Beier-Neeley

- Use weighted combination of points defined by each pair corresponding lines

p^{\prime} is a weighted average
Lecture 14: Wap g and Morphing: Slide 57

Warping Pseudocode: Beier-Neeley

```
foreach destination pixel p do
    psum = (0, 0)
    wsum=(0,0)
    foreach line L[i] in destination do
        p'[i] = p transformed by (L[i], L'[i])
        psum = psum + p'[i] * weight[i]
            wsum += weight[i]
    end
    p' = psum / wsum
    destination(p)= source(p,
end
Lecture 14: Warping and Morphing: Slide 59
```

Weighting Effect of Each Line Pair: Beier-Neeley

- To weight the contribution of each line pair

$$
\text { weight }[i]=\left(\frac{\operatorname{length}[i]^{p}}{a+\operatorname{dist}[i]}\right)^{b}
$$

- where
- length[i] is the length of $L[i]$
$-\operatorname{dist}[\mathrm{i}]$ is the distance from X to $\mathrm{L}[\mathrm{i}]$
$-\mathrm{a}, \mathrm{b}, \mathrm{p}$ are constants that control the warp

[^3]

[^0]: Lecture 14: Warping and Morphing: Slide 24

[^1]: Lecture 14: Warping and Morphing: Slide 48

[^2]: Lecture 14: Warping and Morphing: Slide 56

[^3]: Lecture 14: Warping and Morphing: Slide 58

