Interactive Computer Graphics

- Lecture 15: Warping and Morphing (cont.)

Warping and Morphing: Slide

Non-rigid transformation

- For each control point we have a displacement vector
- How do we interpolate the displacement at a pixel?

Non-rigid transformation

Point to be warped

Warping and Morphing: Slide

Non-rigid transformation: Piecewise affine

- Partition the convex hull of the control points into a set of triangles

[^0]
Non-rigid transformation: Piecewise affine

- Partition the convex hull of the control points into a set of triangles

Waping and Nopphing: Slice 5

Non-rigid transformation: Piecewise affine

- Partition the convex hull of the control points into a set of triangles

Warping and Morphing: Slide 6

Non-rigid transformation: Piecewise affine

- Find triangle which contains point \mathbf{p} and express in terms of the vertices of the triangle:

Warping and Morphing: Slide 7

Non-rigid transformation: Piecewise affine

- Problem: Produces continuous deformations, but the deformation may not be smooth. Straight lines can be kinked across boundaries between triangles

Warping and Morphing: Slide 10

Triangulations

- A triangulation of set of points in the plane is a partition of the convex hull to triangles whose vertices are the points, and do not contain other points.
- There are an exponential number of triangulations of a point set.

Warping and Morphing: Slide 11

An $O\left(\mathrm{n}^{3}\right)$ Triangulation Algorithm

- Repeat until impossible:
- Select two sites.
- If the edge connecting them does not intersect previous edges, keep it.

[^1]
"Quality" Triangulations

- Let $\alpha(T)=\left(\alpha_{1}, \alpha_{2}, . ., \alpha_{3 t}\right)$ be the vector of angles in the triangulation T in increasing order.
- A triangulation T_{1} will be "better" than T_{2} if $\alpha\left(T_{1}\right)>\alpha\left(T_{2}\right)$ lexicographically.
- The Delaunay triangulation is the "best"
- Maximizes smallest angles

Representing deformations

Before deformation

After deformation
Warping and Morphing: Slide 14

B-splines

- Free-Form Deformation (FFD) are a common technique in Computer Graphics for modelling 3D deformable objects
- FFDs are defined by a mesh of control points with uniform spacing
- FFDs deform an underlying object by manipulating a mesh of control points
- control point can be displaced from their original location
- control points provide a parameterization of the transformation

Warping and Morphing: Slide 16

FFDs using linear B-splines

- FFDs based on linear B-splines can be expressed as a 2D (3D) tensor product of linear 1D B-splines:

$$
\mathbf{u}(x, y)=\sum_{i=0}^{1} \sum_{m=0}^{1} B_{l}(u) B_{m}(v) \phi_{i+l, j+m}
$$

where

$$
i=\left\lfloor\frac{x}{\delta_{x}}\right\rfloor, j=\left\lfloor\frac{y}{\delta_{y}}\right\rfloor, u=\frac{x}{\delta_{x}}-\left\lfloor\frac{x}{\delta_{x}}\right\rfloor, v=\frac{y}{\delta_{y}}-\left\lfloor\frac{y}{\delta_{y}}\right\rfloor
$$

and B_{i} corresponds to the B -spline basis functions

$$
\begin{aligned}
& B_{0}(s)=1-s \\
& B_{1}(s)=s
\end{aligned}
$$

Warping and Morphing: Slide 17

FFDs using cubic B-splines

- FFDs based on cubic B-splines can be expressed as a 2D (3D) tensor product of cubic 1D B-splines:

$$
\mathbf{u}(x, y)=\sum_{l=0}^{3} \sum_{m=0}^{3} B_{l}(u) B_{m}(v) \phi_{i+l, j+m}
$$

where

$$
i=\left\lfloor\frac{x}{\delta_{x}}\right\rfloor-1, j=\left\lfloor\frac{y}{\delta_{y}}\right\rfloor-1, u=\frac{x}{\delta_{x}}-\left\lfloor\frac{x}{\delta_{x}}\right\rfloor, v=\frac{y}{\delta_{y}}-\left\lfloor\frac{y}{\delta_{y}}\right\rfloor
$$

and B_{i} corresponds to the B -spline basis functions

$$
\begin{array}{cc}
B_{0}(s)=(1-s)^{3} / 6 & B_{2}(s)=\left(-3 s^{3}+3 s^{2}+3 s+1\right) / 6 \\
B_{1}(s)=\left(3 s^{3}-6 s^{2}+4\right) / 6 & B_{3}(s)=s^{3} / 6
\end{array}
$$

$$
\text { Warping and Morphing: Slide } 18
$$

FFDs: Example

- Image
- width 25 pixels
- height 20 pixels
- Free-form deformation
-6×6 mesh of control points
- linear B-splines
- Calculate new position of pixel

$$
-x=12
$$

FFDs: 2D Example

$$
-y=11
$$

Warping and Morphing: Slide 19

FFDs: 2D Example

FFDs: 2D Example

- Calculate integer lattice coordinates i, j :

$$
i=\left\lfloor\frac{12}{5}\right\rfloor=2 \quad j=\left\lfloor\frac{11}{4}\right\rfloor=2
$$

- Calculate fractional lattice coordinates u, v :

$$
\begin{gathered}
u=\frac{12}{5}-\left\lfloor\frac{12}{5}\right\rfloor=0.4 \quad v=\frac{11}{4}-\left\lfloor\frac{11}{4}\right\rfloor=0.75 \\
\mathbf{u}(x, y)=\sum_{i=0}^{1} \sum_{m=0}^{1} B_{l}(u) B_{m}(v) \phi_{2+l, 2+m}
\end{gathered}
$$

Warping and Morphing: Slide 26

FFDs: 2D Example

$\mathbf{u}(x, y)=B_{0}(0.4) B_{0}(0.75) \phi_{2,2}+$
$+B_{0}(0.4) B_{1}(0.75) \phi_{2,3}+$
$+B_{1}(0.4) B_{0}(0.75) \phi_{3,2}+$
$+B_{1}(0.4) B_{1}(0.75) \phi_{3,3}$
$\mathbf{u}(x, y)=0.15 \cdot\binom{5}{8}+0.45 \cdot\binom{2}{-2}+$
$+0.10 \cdot\binom{3}{7}+0.3 \cdot\binom{3}{-1}=\binom{2.34}{0.7}$

Warping and Morphing: Slide 28

$F F D s$ in $3 D$

FFDs

- Used for warping:
- Lee et al. (1997)
- Advantages:
- Control points have local influence since the basis function has finite support
- Fast
- linear (in 3D: $2 \times 2 \times 2=8$ operations per warp)
- cubic (in 3D: $4 \times 4 \times 4=64$ operations per warp)
- Disadvantages:
- Control points must have uniform spatial distribution

Warping and Morphing: Slide 31

Image Combination

- Determines how to combine attributes associated with geometrical primitives. Attributes may include - color
- texture coordinates
- normals
- Blending
- cross-dissolve
- adaptive cross-dissolve
- alpha-channel blending
- z-buffer blending

Warping and Morphing: Slide 35

```
```

Morphing

```
```

Morphing
GenerateAnimation(Image (, Image }\mp@subsup{}{1}{}\mathrm{)
GenerateAnimation(Image (, Image }\mp@subsup{}{1}{}\mathrm{)
begin
begin
foreach intermediate frame time }t\mathrm{ do
foreach intermediate frame time }t\mathrm{ do
Warp
Warp
Warp
Warp
foreach pixel p in FinalImage do
foreach pixel p in FinalImage do
Result(p)=(1-t) Warp
Result(p)=(1-t) Warp
end
end
end
end
end
end
Warping and Morphing: Slide 34

```
```

Warping and Morphing: Slide 34

```
```


Image Combination: Cross-dissolve

- Blending with cross-dissolve:

$$
I=(1-t) \cdot I_{A}+t \cdot I_{B}
$$

- intensities
- RGB space
- HSV space
- texture space

Warping and Morphing: Slide 36

Image Combination: Adaptive cross-dissolve

- Adaptive cross-dissolve

$$
I=(1-w(\mathbf{p}, \lambda)) \cdot I_{A}(\mathbf{p})+w(\mathbf{p}, \lambda) \cdot I_{B}(\mathbf{p})
$$

- similar to cross-dissolve but blending function depends on position in image

```
Warping and Morphing: Slide 38
```

Image Combination: Alpha channel blending

- Blending using RGBA images

$$
I=\alpha_{a} \cdot I_{A}+\alpha_{b} \cdot I_{B}
$$

- Images are represented by quadruples:
- R, G, B indicating color
- Alpha channel encodes pixel coverage information
$-\alpha=0$
transparent
$-0<\alpha<1$
semi-transparent
$-\alpha=1$
opaque
Example: $\alpha=0.3$

Warping and Morphing: Slide 39

Image Combination: Alpha channel blending

Warping and Morphing: Slide 40

Image Combination: Alpha channel blending

- Suppose we put A over B over background G

- How much of B is blocked by A?
α_{A}
- How much of B shows through A?

$$
\left(1-\alpha_{\mathrm{A}}\right)
$$

- How much of G shows through both A and B ?

$$
\left(1-\alpha_{A}\right)\left(1-\alpha_{B}\right)
$$

Warping and Morphing: Slide 42

Image Combination: Alpha channel blending

Warping and Morphing: Slide 43

Image Combination: Alpha channel blending

- Example: C = A over B
- For colors that are not premultiplied:
- $C=\alpha_{A} A+\left(1-\alpha_{A}\right) \alpha_{B} B$
$\alpha \alpha=\alpha_{A}+\left(1-\alpha_{A}\right) \alpha_{B}$
- For colors that are premultiplied:
$\circ \mathrm{C}^{\prime}=\mathrm{A}^{\prime}+\left(1-\alpha_{A}\right) \mathrm{B}^{\prime}$
$\circ \alpha=\alpha_{A}+\left(1-\alpha_{A}\right) \alpha_{B}$

Warping and Morphing: Slide 44

Image Combination: Z-buffer blending

- Blending using Z-buffer values:

$$
I=\left\{\begin{array}{cc}
I_{a} & \text { if } z_{a}<z_{b} \\
I_{b} & \text { else }
\end{array}\right.
$$

- defines an ordering
- can be used for layering

Warping and Morphing: Slide 45

[^0]: Warping and Morphing: Slide 4

[^1]: Warping and Morphing: Slide 12

