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Interactive Computer Graphics

Lecturers: Duncan Gillies (dfg@doc.ic.ac.uk)
Daniel Rueckert (dr@doc.ic.ac.uk)

Tutors: Paul Aljabar (pa100@doc.ic.ac.uk)
David Thornley (djt@doc.ic.ac.uk)
Julien Pansiot (jpansiot@doc.ic.ac.uk)
Amardeep Singh (asingh@doc.ic.ac.uk)

Webpage: 
http:/www.doc.ic.ac.uk/~dfg/graphics/graphics.html
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Non-DOC Students

 In order to do this course you need to get a department 
of computing login.

 Please email dfg@doc.ic.ac.uk:
 Name
 CID
 IC Login
 Course
 Course Administrator
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Interactive Computer Graphics

 Lecture 1:

 Three Dimensional Graphical Scenes, Projection and 
Transformation
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Two Dimensional Graphics

 The lowest level of graphics processing operates 
directly on the pixels in a window provided by the 
operating system.

 Typical Primitives are:

 SetPixel(int x, int y, int colour);
 DrawLine(int xs, int ys, int xf, int yf);
 etc.
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World Coordinate Systems

 To achieve device independence when drawing 
objects we can define a world coordinate system.

 This will define our drawing area in units that are 
suited to the application:

 meters
 light years
 microns
 etc
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Example
SetWindow(30,10,70,50)
DrawLine (50,30,80,50)
DrawLine (50,5,80,50)

30 70

10

50

World Coordinates

Visible parts of lines

Clipped parts of lines
Drawing Area
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Normalisation

 To map device independent graphics commands to the 
drawing commands using the screen pixels we need a 
process of normalisation. 

 First we must call the API to find out from the 
operating system the pixel addresses of the corners of 
the area we are using. 

 Then we translate the world coordinates to pixel 
coordinates.
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Normalisation

[Xd,Yd]

[Xw,Yw]

Wxmin Wxmax

Dxmin Dxmax

World Coordinate Window

Screen

Viewport (Pixel Coordinates)
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Normalisation

 Having defined our world coordinates, and obtained 
our device coordinates we relate the two by simple 
ratios:

 rearranging we get:
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Normalisation
 A similar equation allows us to calculate the Y pixel 
coordinate. The two form a simple pair of linear 
equations:

 Xd := Xw * A + B;
 Yd := Yw * C + D;

Where A, B, C and D are constants defining the 
normalisation
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Input for Graphics Systems

 An input event occurs when something changes, ie a 
mouse is moved or a button is pressed. The operating 
system informs the application program of events that 
are relevant to it.

 The application program must receive this 
information in what is sometimes called a callback 
procedure (or event loop).



Graphics Lecture 1:  Slide 12

Simple Callback procedure

 while (executing) do
 {   if (menu event) ProcessMenuRequest();
         if (mouse event) 
     { GetMouseCoordinates();
      GetMouseButtons();
      PerformMouseProcess();
       }
 if (window resize event) RedrawGraphics();
 }
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Polygon Rendering

 Many graphics applications use scenes built out of 
planar polyhedra.

 These are three dimensional objects whose faces are 
all planar polygons often called  facets.
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Representing Planar Polygons

 In order to represent planar polygons in the computer 
we will require a mixture of numerical and 
topological data.

 Numerical Data
 Actual 3D coordinates of vertices, etc.

 Topological Data
 Details of what is connected to what
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Projections of Wire Frame Models

 Wire frame models simply include points and lines.

 In order to draw a 3D wire frame model we must first 
convert the points to a 2D representation. Then we 
can use simple drawing primitives to draw them.

 The conversion from 3D into 2D is a projection.
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Projection

Projection of Vi
  

Projection Surface
3D Object

Vi

Viewpoint

Projector
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Non Linear Projections

 In general it is possible to project onto any surface:
 Sphere
 Cone
 etc

 or to use curved projectors, for example to produce 
lens effects.

 However we will only consider planar linear 
projections.
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Normal Orthographic Projection

 This is the simplest form of projection, and effective 
in many cases.

 The viewpoint is at z = -∞ 
 The plane of projection is z=0

 so

 All projectors have direction d = [0,0,-1]



Graphics Lecture 1:  Slide 19

Orthographic Projection onto z=0

z

x

y

V

Projector
V + d

(d=[0,0,-1)

V'
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Calculating an Orthographic Projection

 Projector Equation: 
 P = V + d     (from vertex V)

 Substitute d = [0,0,-1]
 Yields cartesian form

 Px = Vx + 0   Py = Vy + 0    Pz = Vz - 
 The projection plane is z=0 so the projected 

coordinate is
 [Vx,Vy,0]

 ie we simply take the 3D x and y components of the 
vertex
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Orthographic Projection of a Cube

Looking at a Face

Looking at a vertex

General View
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Perspective Projection

 Orthographic projection is fine in cases where we are 
not worried about depth (ie most objects are at the 
same distance from the viewer).

 However for close work (particularly computer 
games) it will not do.

 Instead we use perspective projection
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Canonical Form for Perspective Projection

Y

Z

X

Plane of 
Projection (z=f)

Viewpoint

Scene

Projector

f

Projected point
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Calculating Perspective Projection

 Projector Equation (from vertex V): 
 P = V   (all projectors go through the origin)

 At the projected point Pz=f

 p= Pz/Vz = f/Vz

 Px = pVx and  Py = pVy

 Thus
 Px = f Vx/Vz and Py = f Vy/Vz 

 The constant p is sometimes called the fore-
shortening factor
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Perspective Projection of a Cube

Looking at a vertex

General View

Looking at a Face
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Problem Break

 Given that the viewpoint is at the origin, and the 
viewing plane is at z=5: What point on the viewplane 
corresponds to the 3D vertex {10,10,10} in

 a. Perspective projection
 b. Orthographic projection
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Problem Break

 Given that the viewpoint is at the origin, and the 
viewing plane is at z=5: What point on the viewplane 
corresponds to the 3D vertex {10,10,10} in

 a. Perspective projection
 b. Orthographic projection

Perspective     x'= f x/z = 5 and y' = f y/z = 5

Orthographic  x' = 10 and y' =10
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The Need for Transformations

 Graphics scenes are defined in a particular co-ordinate 
system, however we want to be able to draw a 
graphics scene from any angle

 To draw a graphics scene we need the viewpoint to be 
the origin and the z axis to be the direction of view.

 Hence we need to be able to transform the coordinates 
of a graphics scene.
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Transformation of viewpoint

Y

X

Z

Y
X

Z

Coordinate System
 for definition

Coordinate System 
for viewing

Required Viewpoint
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Other Transformations

 We also need transformations for other purposes:
 
 Animating Objects 

 eg flying titles rotating shrinking etc.

 
 Multiple Instances

 the same object may appear at different places or different 
sizes 

 
 Reflections and other special effects
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Matrix transformations of points

 To transform points we use matrix multiplications, for 
example to make an object at the origin twice as big 
we could use:

 which multiplied out gives:
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Translation by Matrix multiplication

 Many of our transformations will require translation 
of the points. 

 For example if we want to move all the points two 
units along the x axis we would require:

 x’ = x + 2
 y’ = y 
 z’ = z

 But how can we do this with a matrix?
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Honogenous Coordinates

 The answer is to use 4D homogenous coordinates. 
The use of the fourth ordinate allows us to place a 
translation in the bottom row of the matrix.

 multiplying out gives:

 x' = x + 2,   y' = y,    z' = z
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General Homogenous Coordinates

 In most cases the last ordinate will be 1, but in general 
it is a scale factor. 

 Thus, in the projection from 4D to 3D:

       [x, y, z, s]   is equivalent to   [x/s, y/s, z/s]
     Homogenous                             Cartesian
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Affine Transformations

 Affine transformations are those that preserve parallel 
lines.

 Most transformations we require are affine, the most 
important being:

 Scaling
 Translating
 Rotating

 Other more complex transforms will be built from 
these three.
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Translation

 We can apply a general translation by (tx, ty, tz) to the 
points of a scene by using the following matrix 
multiplication.
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Inverting a translation

 Since we know what transformation matrices do, we 
can write down their inversions directly

 For example:
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Scaling

 Scaling simply multiplies each ordinate by a scaling 
factor. It can be done with the following homogenous 
matrix: 
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Inverting scaling

 To invert a scaling we simply divide the individual 
ordinates by the scale factor.
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Combining transformations

 Suppose we want to make an object at the origin 
twice as big and then move it to a point [5, 5, 20].

 The transformation is a scaling followed by a 
translation:
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Combined transformations

 We multiply out the transformation matrices first, 
then transform the points
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Transformations are not commutative

 The order in which transformations are applied 
matters:

 In general

 TT * SS is not the same as SS * TT 
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The order of transformations is significant

Graphics Scene  
(Square at origin)

Translate 
x:=x+1

Scale 
x:=2x
 

Translate 
x:=x+1

Scale 
x:=2x 

Y

X

Y

X

Y

X

Y

X

Y

X
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Rotation

 To define a rotation we need an axis.

 The simplest rotations are about the Cartesian axes

 eg

 RxRx - Rotate about the X axis
 RyRy - Rotate about the Y axis
 Rz - Rotate about the Z axis
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Rotation Matrices
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Deriving Rz

Rotate by 
r

r


 [x,y]

[xt, yt]Y

X

Error in Handout:
 and  are the wrong way round
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Signs of Rotations

 Rotations have a direction. 

 The following rule applies to the matrix formulations 
given in the notes:

 Rotation is clockwise when viewed from the positive 
side of the axis
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Inverting Rotation

 Inverting a rotation by an angle  is equivalent to 
rotating through an angle of -, now

 Cos(-) = Cos()

 and

 Sin(-) = -Sin()
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Inverting Rz

 To invert a rotation matrix simply change the sign of 
the sin terms.


