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Lecture 2

 Transformations for animation
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We previously defined transformation matrices for 
the most useful operations:

Translation:

Scaling:
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Rotations about the x, y and z axes

We now consider more complex transformations 
which are combinations of these.
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Flying Sequences

 In generating animated flying sequences we require 
the viewpoint to move around the scene.

 This implies a change of origin

 Let the required viewpoint be C = [Cx,Cy,Cz]
 and the required view direction be d = [dx,dy,dz]
 Let |d| = 1
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Recall that we have a canonical form for 
Perspective Projection:
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Transformation of viewpoint

C

d
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Flying Sequences

 The required transformation is in three parts:

 1. Translation of the Origin
 2. Rotate about Y
 3. Rotate about X

 The two rotations are to line up the z axis with the 
view direction
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Translation of the Origin
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Rotate about Y until dx = 0



dz

dx

X

Z
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Rotate about X until dy = 0



dy

Z

Y

|d|=1
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Combining the matrices

 The matrix that transforms the scene is:

 TT = AA * BB * CC

 and for every point in the graphics scene we calculate

 P’ = P * TT
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Verticals

 Notice we have not introduced verticals in the above 
analysis.

 Usually, the y direction is treated as vertical, and by 
doing the Ry transformation first, things work out 
correctly

 However it is possible to invert the vertical
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Rotate 
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about X

Viewing Direction [0,0,-1]
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Rotation about a general line

 Special effects, such as rotating a scene about a 
general line can be achieved by transformations,

 The transformation is formed by:

 Making the line of rotation one of the Cartesian axes
 Doing the rotation
 Restoring the line to its original place
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Rotation about a general line

 The first part is achieved by the same matrix that we 
derived for the flying sequences

 TT = AA * BB * CC

 and the rest is achieved by a rotation followed by the 
inversion of T

 TT = AA * BB * C C * Rz Rz * C C-1  * B B-1  * A A-1
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Other Effects

 Similar effects can be created using this approach

 eg Making objects shrink

 1. Move the object to the origin
 2. Apply a scaling matrix
 3. Move the object back to where it was
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Projection by Matrix multiply

 Usually projection and drawing of a scene comes after 
transformation.

 It is therefore convenient to combine the projection 
with the other parts of the transformation
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Orthographic Projection Matrix

 For orthographic projection we simply drop the z 
coordinate:

 Note that the matrix is singular. Projection cannot be 
inverted.

.
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Perspective Projection Matrix

 Perspective projection of homogenous coordinates can 
also be done by matrix multiplication:
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Normalisation

 Remember that homogenous coordinates need to be 
normalised, so we need to divide by the last ordinate 
as a final step:

 [x,y,z,z/f] is normalised to [x*f/z,  y*f/z,  f,  1]

 as required.
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Projection matrices are singular

 Notice that projection matrices are singular (they 
cannot be inverted)

 This is because a projection cannot be inverted, ie

 Given a 2D image, we cannot in general reconstruct 
the 3D original.
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Affine transformations

 Affine transformations:
 translation
 scaling
 rotation
 orthographic projection

 preserve parallelism and linearity. 

 Non-affine transformations:
 perspective projection
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Homogenous Coordinates as Vectors

 We now take a second look at homogeneous 
coordinates, and their relation to vectors.

 In the previous lecture we described the fourth 
ordinate as a scale factor.

 [X, Y, Z, h]   is equivalent to    [X/h, Y/h, Z/h]

 Homogenous                           Cartesian
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Homogenous co-ordinates and vectors

 Homogenous co-ordinates fall into two types:

 1. Those with the final ordinate non-zero, which 
can be normalised into position vectors.

 2. Those with zero in the final ordinate which are 
direction vectors, and have direction magnitude.
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Vector Addition

 If we add two direction vectors,  we obtain a direction 
vector. ie:

 [xi,yi,zi,0] + [xj,yj,zj,0] = [xi+xj, yi+yj, zi+zj,0]

 This is the normal vector addition rule.
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Adding position and direction vectors

 If we add a direction vector to a position vector we 
obtain a position vector:

 [Xi,Yi,Zi,1]+[xj,yj,zj,0] = [Xi+xj,Yi+yj,Zi+zj,1]

P

d

Line L = P + d

 This is a nice result, 
because it ties in with 
the definition of a 
straight line in 
Cartesian space which 
uses a point and a 
direction:
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Adding two position vectors

 If we add two position vectors we obtain their mid-
point:

 [Xi,Yi,Zi,1] + [Xj,Yj,Zj,1]  = [Xi+Xj,Yi+Yj,Zi+Zj,2]

                                     = [(Xi+Xj)/2,(Yi+Yj)/2,(Zi+Zj)/2,1]

 Note that this is a reasonable result since adding two 
position vectors has no meaning in vector algebra.
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The structure of a transformation matrix

 The rows of a transformation matrix comprise three 
direction vectors and one position vector.

Direction vector
Direction vector
Direction vector
Position vector
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Characteristics of Transformation matrices

 In a direction vector the zero in the last ordinate 
ensures vectors will not be affected by the translation.

 In a position vector the 1 in the last ordinate means all 
 vectors will have the same displacement.

 If we do not shear the object the three vectors q r and 
s will remain orthogonal, ie:

                    q • r = r • s = q • s = 0. 
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What the individual rows mean?

 To see this we consider the effect of the 
transformation in simple cases.

 For example take the unit vectors along the Cartesian 
axes eg along the x axis, i = [1,0,0,0] 
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Axis Transformation

 Similarly we find that direction 
 j = [0,1,0,0] 
 will be transformed to direction 
 [rx,ry,rz,0] 

 and k = [0,0,1,0] 
 will be transformed to [sx,sy,sz,0].
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Transforming the Origin

 If we transform the origin we end up with the bottom 
row of the transformation matrix.
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Meaning of a transformation matrix

The original x-axis

The original y axis

The original z-axis

The original origin

 The rows are the original axis system in the new 
coordinate system.
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Effect of a transformation matrix

u v

w
k

j

i

-C

Origin

i j

k
s

r

q

C
Origin



Graphics Lecture 2:  Slide 35

What we want is the other way round
 We are given the values of [u,v,w] and C and would 

like to know the transformation matrix that moves the 
scene to that coordinate system.

 To see how to do this we introduce the notion of the 
dot product as a projection.

C

u v

w
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The dot product as projection

P
v

uP.v

P.u

|P|



 The dot product is defined as P.u = |P| |u| Cos  
 If u is a unit vector then P.u = |P| Cos
 If u is one of the co-ordinate axes then P.u is the 

ordinate of P in the u direction.
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Changing axes by projection

P-C

C

Py

x

z

u
wv

 Extending the idea to three dimensions we can see that 
a change of axes can be expressed as projections using 
the dot product.

 

 For example:
 

 Pt
x = (P-C).u = P.u - C
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Transforming point P

 Given point P in the [x,y,z] axis system, we can 
calculate the corresponding point in the [u,v,w] space 
as: Ptx = (P-C).u = P.u - C.u

      Pty = (P-C).v = P.v - C.v
      Ptz = (P-C).w = P.w - C.w
 or in matrix form:
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Verticals

 Unlike the previous analysis we now can control the 
vertical,

 ie the v direction is taken as the vertical and 
constrained by the software to be upwards
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Back to flying sequences

 We now return to the flying sequences problem and 
solve for the transformation matrix by finding the 
vectors u,v and w.

 Given a viewpoint point C and a view direction d we 
need to find the transformation matrix.

 We know that d is the direction of the new z axis, so 
we can write immediately:

 w = d/|d|
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Now the horizontal direction

 Let the horizontal direction be p

 Thus u = p/|p|

 To ensure that p is horizontal we need

 py = 0

 (p has no vertical component)
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And the vertical direction

 Let q be the vertical direction, thus

 v = q/|q|

 q must have a positive y component, so we can say:

 qy = 1
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So we have four unknowns

 p = [px,0,pz]
 q = [qx,1,qz]

 To solve for these we use the cross product and dot 
product. Since the axis system is left handed:

 d = p x q

 (we can do this because p’s magnitude is not set)
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Evaluating the cross product

 dx = -pz
 dy = pz qx - px qz
 dz = px

 so we have now completely specified vector p

[dx,dy,dz]  = i j k
px 0 pz
qx 1 qz
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Using the dot product

 Lastly we can use the fact that the vectors p and q are 
orthogonal, thus

 p.q = 0

 px qx + pz qz = 0
 and from the cross product (last slide)
 dy = pz qx - px qz
 So we have a simple linear equation to solve for q
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The final matrix

 As defined we have

 u = p/|p|    v = q/|q|   w= d/|d|

 so we can write down the matrix.


