
Graphics Lecture 2: Slide 1

Lecture 2

 Transformations for animation

Graphics Lecture 2: Slide 2

We previously defined transformation matrices for
the most useful operations:

Translation:

Scaling:

Graphics Lecture 2: Slide 3

Rotations about the x, y and z axes

We now consider more complex transformations
which are combinations of these.

Graphics Lecture 2: Slide 4

Flying Sequences

 In generating animated flying sequences we require
the viewpoint to move around the scene.

 This implies a change of origin

 Let the required viewpoint be C = [Cx,Cy,Cz]
 and the required view direction be d = [dx,dy,dz]
 Let |d| = 1

Graphics Lecture 2: Slide 5

Recall that we have a canonical form for
Perspective Projection:

Graphics Lecture 2: Slide 6

Transformation of viewpoint

C

d

Graphics Lecture 2: Slide 7

Flying Sequences

 The required transformation is in three parts:

 1. Translation of the Origin
 2. Rotate about Y
 3. Rotate about X

 The two rotations are to line up the z axis with the
view direction

Graphics Lecture 2: Slide 8

Translation of the Origin

C

Viewing direction

y

z

x

y z

x

d

d

Graphics Lecture 2: Slide 9

Rotate about Y until dx = 0

dz

dx

X

Z

Graphics Lecture 2: Slide 10

Rotate about X until dy = 0

dy

Z

Y

|d|=1

v

Graphics Lecture 2: Slide 11

Combining the matrices

 The matrix that transforms the scene is:

 TT = AA * BB * CC

 and for every point in the graphics scene we calculate

 P’ = P * TT

Graphics Lecture 2: Slide 12

Verticals

 Notice we have not introduced verticals in the above
analysis.

 Usually, the y direction is treated as vertical, and by
doing the Ry transformation first, things work out
correctly

 However it is possible to invert the vertical

Graphics Lecture 2: Slide 13

Rotate
about Y

Rotate
about X

Viewing Direction [0,0,-1]

Y

Z

Y

Z
Vertical Inverted

Vertical Preserved

Y

Z

Transformations and Verticals

Graphics Lecture 2: Slide 14

Rotation about a general line

 Special effects, such as rotating a scene about a
general line can be achieved by transformations,

 The transformation is formed by:

 Making the line of rotation one of the Cartesian axes
 Doing the rotation
 Restoring the line to its original place

Graphics Lecture 2: Slide 15

Rotation about a general line

 The first part is achieved by the same matrix that we
derived for the flying sequences

 TT = AA * BB * CC

 and the rest is achieved by a rotation followed by the
inversion of T

 TT = AA * BB * C C * Rz Rz * C C-1 * B B-1 * A A-1

Graphics Lecture 2: Slide 16

Other Effects

 Similar effects can be created using this approach

 eg Making objects shrink

 1. Move the object to the origin
 2. Apply a scaling matrix
 3. Move the object back to where it was

Graphics Lecture 2: Slide 17

Projection by Matrix multiply

 Usually projection and drawing of a scene comes after
transformation.

 It is therefore convenient to combine the projection
with the other parts of the transformation

Graphics Lecture 2: Slide 18

Orthographic Projection Matrix

 For orthographic projection we simply drop the z
coordinate:

 Note that the matrix is singular. Projection cannot be
inverted.

.

Graphics Lecture 2: Slide 19

Perspective Projection Matrix

 Perspective projection of homogenous coordinates can
also be done by matrix multiplication:

Graphics Lecture 2: Slide 20

Normalisation

 Remember that homogenous coordinates need to be
normalised, so we need to divide by the last ordinate
as a final step:

 [x,y,z,z/f] is normalised to [x*f/z, y*f/z, f, 1]

 as required.

Graphics Lecture 2: Slide 21

Projection matrices are singular

 Notice that projection matrices are singular (they
cannot be inverted)

 This is because a projection cannot be inverted, ie

 Given a 2D image, we cannot in general reconstruct
the 3D original.

Graphics Lecture 2: Slide 22

Affine transformations

 Affine transformations:
 translation
 scaling
 rotation
 orthographic projection

 preserve parallelism and linearity.

 Non-affine transformations:
 perspective projection

Graphics Lecture 2: Slide 23

Homogenous Coordinates as Vectors

 We now take a second look at homogeneous
coordinates, and their relation to vectors.

 In the previous lecture we described the fourth
ordinate as a scale factor.

 [X, Y, Z, h] is equivalent to [X/h, Y/h, Z/h]

 Homogenous Cartesian

Graphics Lecture 2: Slide 24

Homogenous co-ordinates and vectors

 Homogenous co-ordinates fall into two types:

 1. Those with the final ordinate non-zero, which
can be normalised into position vectors.

 2. Those with zero in the final ordinate which are
direction vectors, and have direction magnitude.

Graphics Lecture 2: Slide 25

Vector Addition

 If we add two direction vectors, we obtain a direction
vector. ie:

 [xi,yi,zi,0] + [xj,yj,zj,0] = [xi+xj, yi+yj, zi+zj,0]

 This is the normal vector addition rule.

Graphics Lecture 2: Slide 26

Adding position and direction vectors

 If we add a direction vector to a position vector we
obtain a position vector:

 [Xi,Yi,Zi,1]+[xj,yj,zj,0] = [Xi+xj,Yi+yj,Zi+zj,1]

P

d

Line L = P + d

 This is a nice result,
because it ties in with
the definition of a
straight line in
Cartesian space which
uses a point and a
direction:

Graphics Lecture 2: Slide 27

Adding two position vectors

 If we add two position vectors we obtain their mid-
point:

 [Xi,Yi,Zi,1] + [Xj,Yj,Zj,1] = [Xi+Xj,Yi+Yj,Zi+Zj,2]

 = [(Xi+Xj)/2,(Yi+Yj)/2,(Zi+Zj)/2,1]

 Note that this is a reasonable result since adding two
position vectors has no meaning in vector algebra.

Graphics Lecture 2: Slide 28

The structure of a transformation matrix

 The rows of a transformation matrix comprise three
direction vectors and one position vector.

Direction vector
Direction vector
Direction vector
Position vector

Graphics Lecture 2: Slide 29

Characteristics of Transformation matrices

 In a direction vector the zero in the last ordinate
ensures vectors will not be affected by the translation.

 In a position vector the 1 in the last ordinate means all
 vectors will have the same displacement.

 If we do not shear the object the three vectors q r and
s will remain orthogonal, ie:

 q • r = r • s = q • s = 0.

Graphics Lecture 2: Slide 30

What the individual rows mean?

 To see this we consider the effect of the
transformation in simple cases.

 For example take the unit vectors along the Cartesian
axes eg along the x axis, i = [1,0,0,0]

Graphics Lecture 2: Slide 31

Axis Transformation

 Similarly we find that direction
 j = [0,1,0,0]
 will be transformed to direction
 [rx,ry,rz,0]

 and k = [0,0,1,0]
 will be transformed to [sx,sy,sz,0].

Graphics Lecture 2: Slide 32

Transforming the Origin

 If we transform the origin we end up with the bottom
row of the transformation matrix.

Graphics Lecture 2: Slide 33

Meaning of a transformation matrix

The original x-axis

The original y axis

The original z-axis

The original origin

 The rows are the original axis system in the new
coordinate system.

Graphics Lecture 2: Slide 34

Effect of a transformation matrix

u v

w
k

j

i

-C

Origin

i j

k
s

r

q

C
Origin

Graphics Lecture 2: Slide 35

What we want is the other way round
 We are given the values of [u,v,w] and C and would

like to know the transformation matrix that moves the
scene to that coordinate system.

 To see how to do this we introduce the notion of the
dot product as a projection.

C

u v

w

Graphics Lecture 2: Slide 36

The dot product as projection

P
v

uP.v

P.u

|P|

 The dot product is defined as P.u = |P| |u| Cos
 If u is a unit vector then P.u = |P| Cos
 If u is one of the co-ordinate axes then P.u is the

ordinate of P in the u direction.

Graphics Lecture 2: Slide 37

Changing axes by projection

P-C

C

Py

x

z

u
wv

 Extending the idea to three dimensions we can see that
a change of axes can be expressed as projections using
the dot product.

 For example:

 Pt
x = (P-C).u = P.u - C

Graphics Lecture 2: Slide 38

Transforming point P

 Given point P in the [x,y,z] axis system, we can
calculate the corresponding point in the [u,v,w] space
as: Ptx = (P-C).u = P.u - C.u

 Pty = (P-C).v = P.v - C.v
 Ptz = (P-C).w = P.w - C.w
 or in matrix form:

Graphics Lecture 2: Slide 39

Verticals

 Unlike the previous analysis we now can control the
vertical,

 ie the v direction is taken as the vertical and
constrained by the software to be upwards

Graphics Lecture 2: Slide 40

Back to flying sequences

 We now return to the flying sequences problem and
solve for the transformation matrix by finding the
vectors u,v and w.

 Given a viewpoint point C and a view direction d we
need to find the transformation matrix.

 We know that d is the direction of the new z axis, so
we can write immediately:

 w = d/|d|

Graphics Lecture 2: Slide 41

Now the horizontal direction

 Let the horizontal direction be p

 Thus u = p/|p|

 To ensure that p is horizontal we need

 py = 0

 (p has no vertical component)

Graphics Lecture 2: Slide 42

And the vertical direction

 Let q be the vertical direction, thus

 v = q/|q|

 q must have a positive y component, so we can say:

 qy = 1

Graphics Lecture 2: Slide 43

So we have four unknowns

 p = [px,0,pz]
 q = [qx,1,qz]

 To solve for these we use the cross product and dot
product. Since the axis system is left handed:

 d = p x q

 (we can do this because p’s magnitude is not set)

Graphics Lecture 2: Slide 44

Evaluating the cross product

 dx = -pz
 dy = pz qx - px qz
 dz = px

 so we have now completely specified vector p

[dx,dy,dz] = i j k
px 0 pz
qx 1 qz

Graphics Lecture 2: Slide 45

Using the dot product

 Lastly we can use the fact that the vectors p and q are
orthogonal, thus

 p.q = 0

 px qx + pz qz = 0
 and from the cross product (last slide)
 dy = pz qx - px qz
 So we have a simple linear equation to solve for q

Graphics Lecture 2: Slide 46

The final matrix

 As defined we have

 u = p/|p| v = q/|q| w= d/|d|

 so we can write down the matrix.

