Interactive Computer Graphics

- The Graphics Pipeline: Clipping

Some slides adopted from F. Durand and B. Cutler, MIT

The Graphics Pipeline

Modelling Transformations
Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)
Clipping
Projection
(to Screen Space)
Scan Conversion
(Rasterization)

```
    Visibility / Display
```

raphics Lecture 4: Slide 2

Input:

- geometric model
- illumination mode - camera mod
- viewport
- viewport

Output: 2D image for framebuffer display

The Graphics Pipeline

Modelling Transformations
Illumination (Shading)
Viewing Transformation (Perspective / Orthographic)
Clipping
Projection (to Screen Space)
Scan Conversion (Rasterization)
Visibility / Display
Graphics Lecture 4: Slide 3

- 3D models are defined in their own coordinate system
- Modeling transformations orient the models within a common coordinate frame (world coordinates)

The Graphics Pipeline

The Graphics Pipeline

Modelling Transformations Illumination (Shading) Viewing Transformation (Perspective / Orthographic) Clipping Projection (to Screen Space) Scan Conversion (Rasterization) Visibility / Display Graphics Lecture 4: Slide 5

- Maps world space to eye (camera) space
- Viewing position is transformed to origin and viewing direction is oriented along some axis (typically z)

The Graphics Pipeline

Modelling Transformations
Illumination (Shading)

\checkmark iewing Transformation

(Perspective / Orthographic)

Clipping
Projection (to Screen Space)
Scan Conversion (Rasterization)
Visibility / Display

- Transforms to Normalized Device Coordinates
- Portions of the scene outside the

NDC

The Graphics Pipeline

Modelling Transformations
Illumination (Shading) Viewing Transformation (Perspective / Orthographic) Clipping Projection (to Screen Space) Scan Conversion (Rasterization) Visibility / Display Graphics Lecture 4: Slide 7

- The objects are projected to the 2D imaging plane (screen space)

The Graphics Pipeline

Modelling Transformations
Illumination (Shading) Viewing Transformation (Perspective / Orthographic) Clipping Projection (to Screen Space) Scan Conversion (Rasterization) Visibility / Display Graphics Lecture 4: Slide 8

- Rasterizes objects into pixels
- Interpolate values inside
objects (color, depth, etc.)

The Graphics Pipeline

Modelling Transformations Illumination (Shading) Viewing Transformation (Perspective / Orthographic) Clipping Projection (to Screen Space) Scan Conversion (Rasterization) Visibility / Display Graphics Lecture 4: Slide 9

- Handles occlusions
- Determines which objects are closest and therefore visible

-

Clipping

- Eliminate portions of objects outside the viewing frustum
- View frustum
- boundaries of the image plane projected in 3D
a near \& far clipping plane
- User may define additional clipping planes

Why clipping ?

- Avoid degeneracy
- e.g. don't draw objects behind the camera
- Improve efficiency
- e.g. do not process objects which are not visisble

Graphics Lecture 4: Slide 11

When to clip?

- Before perspective transform in 3D space
- use the equation of 6 planes
- natural, not too degenerate
- In homogeneous coordinates after perspective transform (clip space)
- before perspective divide
(4D space, weird w values)
- canonical, independent of camera
- simplest to implement
- In the transformed 3D screen space after perspective division
- problem: objects in the plane of the camera

Graphics Lecture 4: Slide 12

The concept of a halfspace

Graphics Lecture 4: Slide 13

The concept of a halfspace

The concept of a halfspace

The concept of a halfspace in 3D

$$
\begin{aligned}
& \text { Plane equation } \mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0 \\
& \text { or } \mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=0
\end{aligned}
$$

Point-to-Plane Distance

- If $(\mathrm{A}, \mathrm{B}, \mathrm{C})$ is normalized:
$\mathrm{d}=\mathrm{H} \bullet \mathrm{p}=\mathrm{H}^{\mathrm{T}} \mathrm{p}$
(the dot product in homogeneous coordinates)
- d is a signed distance:
positive = "inside"
negative $=$ "outside"

Graphics Lecture 4: Slide 19

Reminder: Homogeneous Coordinates

- Recall:
- For each point ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$)
there are an infinite number of equivalent homogenous coordinates: (sx, sy, sz, sw)

- Infinite number of equivalent plane expressions:

$$
\mathrm{sAx}+\mathrm{sBy}+\mathrm{sCz}+\mathrm{sD}=0 \rightarrow \mathrm{H}=(\mathrm{sA}, \mathrm{sB}, \mathrm{sC}, \mathrm{sD})
$$

Graphics Lecture 4: Slide 18

Clipping a Point with respect to a Plane

- If $\mathrm{d}=\mathrm{H} \bullet \mathrm{p} \geq 0$ Pass through
- If $\mathrm{d}=\mathrm{H} \bullet \mathrm{p}<0$:

Clip (or cull or reject)

Graphics Lecture 4: Slide 20

Clipping with respect to View Frustum

- Test against each of the 6 planes
- Normals oriented towards the interior
- Clip (or cull or reject) point p if any $\mathrm{H} \bullet p<0$

aphics Lecture 4: Slide 21

What are the View Frustum Planes?

s Lecture 4: Slide 2 2

Line - Plane Intersection

- Compute the intersection between the line and plane for any vector \mathbf{p} lying on the plane $\mathbf{n} \bullet \mathbf{p}=0$
- Let the intersection point be $\mu \mathbf{p}_{1}+(1-\mu) \mathbf{p}_{0}$ and assume that \mathbf{v} is a vertex of the object, a vector on the plane is given by $\mu \mathbf{p}_{\mathbf{1}}+(1-\mu) \mathbf{p}_{\mathbf{0}}-\mathbf{v}$
- Thus $\mathbf{n} \bullet\left(\mu \mathbf{p}_{1}+(1-\mu) \mathbf{p}_{\mathbf{0}}-\mathbf{v}\right)=0$ and we can solve this for μ_{i} and hence find the point of intersection
- We then replace \mathbf{p}_{0} with the intersection point

[^0]
Segment Clipping

- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}<0$
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}>0$
- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}>0$
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}<0$

Graphics Leecture 4: Slide 25

Segment Clipping

- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}<0$ - clip q to plane
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}>0$
- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}>0$
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}<0$
raphics Lecture 4: Slide 2

Segment Clipping

- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}<0$
- clip q to plane
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}>0$ - clip p to plane
- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}>0$
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}<0$

Griphics Lecture 4: Silide 27

Segment Clipping

- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}<0$ - clip q to plane
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \cdot \mathrm{q}>0$ - clip p to plane
- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}>0$ - pass through
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \cdot \mathrm{q}<0$

Segment Clipping

- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}<0$
- clip q to plane
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}>0$ - clip p to plane
- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}>0$
- pass through
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}<0$ - clipped out

Graphics Lecture 4: Slide 29

Clipping against the frustum

- For each frustum plane H
- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \cdot \mathrm{q}<0$, clip q to H
 segment.

Graphics Lecture 4: Slide 30

Two Definitions of Convex

1. A line joining any two points on the boundary lies inside the object.
2. The object is the intersection of planar halfspaces.

Graphics Lecture 4; Slide 31

Algorithm for determining if an object is convex
convex = true
for each face of the object
\{ find the plane equation of the face $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ choose one object point $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)$ not on the face and find $\operatorname{sign}\left(\mathrm{F}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)\right)$
for all other points of the object
$\left\{\quad\right.$ if $\left(\operatorname{sign}\left(\mathrm{F}^{\left.\left.\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}, \mathrm{z}_{\mathrm{j}}\right)\right)!=\operatorname{sign}\left(\mathrm{F}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)\right)\right), ~(, ~}\right.\right.$
then convex $=$ false
\}
\}
Graphics Lecture 4; Slide 32

Testing for Convex

Graphics Lecture 4: Slide 33

Testing for Containment

- A frequently encountered problem is to determine whether a point is inside an object or not.
- We need this for clipping against polyhedra

```
Algorithm for Containment
let the test point be ( }\mp@subsup{\textrm{x}}{\textrm{t}}{},\mp@subsup{\textrm{y}}{\textrm{t}}{},\mp@subsup{\textrm{z}}{\textrm{t}}{}
contained = true
for each face of the object
{ find the plane equation of the face F(x,y,z)=0
        choose one object point ( }\mp@subsup{\textrm{x}}{\textrm{i}}{},\mp@subsup{y}{i}{},\mp@subsup{z}{i}{})\mathrm{ ) not on the face
            and find }\operatorname{sign}(\textrm{F}(\mp@subsup{\textrm{x}}{\textrm{i}}{},\mp@subsup{\textrm{y}}{\textrm{i}}{},\mp@subsup{\textrm{z}}{\textrm{i}}{})
        if (\operatorname{sign}(\textrm{F}(\mp@subsup{\textrm{x}}{\textrm{t}}{},\mp@subsup{\textrm{y}}{\textrm{t}}{},\mp@subsup{\textrm{z}}{\textrm{t}}{}))!=\operatorname{sign}(\textrm{F}(\mp@subsup{\textrm{x}}{\textrm{i}}{},\mp@subsup{\textrm{y}}{\textrm{i}}{},\mp@subsup{\textrm{z}}{\textrm{i}}{})))
            then contained = false
}
Graphis Leetre4;4: Slide 35
find the plane equation of the face \(\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0\)
\[
\text { and find } \operatorname{sign}\left(\mathrm{F}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)\right)
\]
if \(\left(\operatorname{sign}\left(\mathrm{F}\left(\mathrm{x}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}}, \mathrm{z}_{\mathrm{t}}\right)\right)!=\operatorname{sign}\left(\mathrm{F}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)\right)\right)\)
then contained \(=\) false
\}
Graphics Lecture 4: Slide 35
```


Vector formulation

- The same test can be expressed in vector form.
- This avoids the need to calculate the Cartesian equation of the plane, if, in our model we store the normal \mathbf{n} vector to each face of our object.

Vector test for containment

Finding a normal vector

- The normal vector can be found from the cross product of two vectors on the plane, say two edge vectors

Graphics Lecture 4; Slide 39

Normal vector to a face

- The vector formulation does not require us to find the plane equation of a face, but it does require us to find a normal vector to the plane; same thing really since for plane $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=0$ a normal vector is $\mathrm{n}=(\mathrm{A}, \mathrm{B}, \mathrm{C})$

But which normal vector points inwards?

[^1]Checking the normal direction

Graphics Lecture 4: Slide 41

Solution 1

$\mathbf{P}-\mathbf{A}=(1,1,1)-(-1,-1,1)$
$=(2,2,0)$
$\mathbf{n} \bullet(\mathbf{P}-\mathbf{A})=6+10=16$
$\mathbf{n} \bullet(\mathbf{P}-\mathbf{A})$ is positive,
θ is acute
\mathbf{n} is an inner normal

Problem Break

- A face of a convex object lies in the plane
- $3 x+5 y+7 z+1=0$ and a vertex is $(-1,-1,1)$
- The normal vector is therefore $\mathbf{n}=(3,5,7)$
- Problems:

1. If another vertex of the object is $\mathbf{v}=(1,1,1)$ determine whether \mathbf{n} is an inner or outer surface normal.
2. Determine whether the point $\mathbf{p}=(1,0,-1)$ is on the inside or the outside of the face

Graphics Lecture 4: Slide 42

Solution 2

Method 1:

- The plane has equation $3 x+5 y+7 z+1=0$
$F(x, y, z)=3 x+5 y+7 z+1=0$
- For the internal point $\mathbf{v}=(1,1,1)$:

$$
F(1,1,1)=16
$$

- For the test point $\mathbf{p}=(1,0,-1)$:

$$
F(1,0,-1)=-3
$$

- The signs are different, so the test point is on the outside

Solution 2

Method 2:

The inner surface normal is $\mathbf{n}=(3,5,7)$
for the test point $\mathbf{p}=(1,0,-1)$ and vertex $\mathbf{v}=(-1,-1,1)$

$$
\begin{aligned}
& \mathbf{p - v}=(2,1,-2) \\
& \mathbf{n} \bullet(\mathbf{p}-\mathbf{v})=-3
\end{aligned}
$$

Thus the angle to the normal is >90 and the point \mathbf{p} is on the outside

The Ray test in two dimensions

Find all intersections between the ray and the polygon edges. If the number of intersections is odd the point is contained

[^2]
Concave Objects

- Containment and clipping can also be carried out with concave objects.
- Most algorithms are based on the ray containment test.

Calculating intersections with rays

- Rays have equivalent equations to lines, but go in only one direction. For test point T a ray is defined as

$$
\mathbf{R}=\mathbf{T}+\mu \mathbf{d} \quad \mu>0
$$

- We choose a simple to compute direction eg

$$
\mathbf{d}=[1,0,0]
$$

Graphics Lecture 4: Slide 48

Valid Intersections

Graphics Lecture 4: Slide 49

Extending the ray test to $3 D$

A ray is projected in any direction
If the number of intersections with the object is odd, then the test point is inside

Graphics Lecture 4: Slide 50

The plane of a face

- Unfortunately the plane of a face does not in general line up with the Cartesian axes, so the second part is not a two dimensional problem.
- However, containment is invariant under orthographic projection, so it can be simply reduced to two dimensions.

Clipping to concave volumes

- Find every intersection of the line to be clipped with the volume.
- This divides the line into one or more segments.
- Test a point on the first segment for containment
- Adjacent segments will be alternately inside and out.

```
Graphics Lecture 4: Slide 53
```

Splitting a volume into convex parts

Split the Object

Graphics Lecture 4: Slide 56

[^0]: Graphics Lecture 4: Slide 2

[^1]: Graphics Lecture 4: Slide 40

[^2]: Graphics Lecture 4; Slide 47

