Tutorial 02: Transformations of Graphics Scenes

1 In a computer graphics animation scene an object is defined using planar polygons. The object centre is located at position $\mathrm{P}=[0,0,10]$, and the scene is drawn, as normal, in perspective projection with the viewpoint at the origin and the view direction along the z-axis. Calculate the transformation matrix that will shrink the object in size by a factor of 0.8 towards its centre point.

2 Use your matrix of part 1 to check what happens to the points [$0,0,10]$ and $[0,0,5]$. Is your result what you expect?

3 In a different animation, the object, defined above is required to rotate clockwise, looking from the origin, while shrinking. In each successive frame it is to rotate by 15° while shrinking to 0.8 of its original size. The rotation axis is to be the z axis, and the shrinkage is, as before, towards the object's centre. Given that $\operatorname{Cos}\left(15^{\circ}\right)=.97$ and $\operatorname{Sin}\left(15^{\circ}\right)=.26$, what is the transformation matrix that will achieve this animation?

4 The scene of question 1 (above) is to be drawn in perspective projection with the plane of projection being $\mathrm{z}=2$. Find the combined transformation that will do animation of part 1 followed by the perspective projection. Is your matrix singular?

5 Use your matrix to find the transformation and perspective projection of the points $[0,0,10]$ and $[0,0,5]$ in homogenous coordinates and then in Cartesian coordinates.

6 The scene is to be viewed from a moving viewpoint specified by its position \mathbf{C} and a left handed viewing coordinate system $[\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}]$. At one point in the animation the view direction is $\boldsymbol{w}=[-1,0,0]$, and the viewpoint is given by $\mathbf{C}=$ $[50,10,-10]$. Given that the view is in the horizontal plane $(\boldsymbol{v}=[0,1,0])$ find the value of \boldsymbol{u}.

7 Hence, or otherwise, find the viewing transformation matrix.

