Tutorial: Warping and Morphing

1. Explain what is meant by the following equation:

$$morphing = (warping)^2 + blending$$

- 2. In the algorithm developed by Beier and Neeley pairs of lines are used to specify the warping. In a concrete example two pairs of lines specify a 2D warping: In the source image the line L_1 starts at (1, 1) and ends at (1, 9). The line L_2 starts at (9, 2) and ends at (9, 8). In the target image the corresponding line L_1 starts at (1, 1) and ends at (1, 9) while L_2 starts at (3, 2) and ends at (9, 2). Calculate where the pixel $\mathbf{p} = (5, 5)$ in the source image would map to in the target image. Assume that the constants controlling the warping are a = b = p = 1.
- 3. An image with 300 x 175 pixels is warped using a two-dimensional free-form deformation based on linear B-splines defined by a 6 x 6 mesh of control points.
 - a. Calculate the spacing between control points in pixels.
 - b. Calculate the pixel coordinates for the following B-spline integer lattice coordinates *i*, *j* and the fractional lattice coordinates *u*, *v*:

```
i. (i, j) = (1, 1) and (u, v) = (0, 0)
ii. (i, j) = (1, 1) and (u, v) = (0.5, 0.5)
iii. (i, j) = (1, 3) and (u, v) = (0.75, 0.2857)
```

c. Calculate the B-spline integer lattice coordinates i, j and the fractional lattice coordinates u, v for the following pixels:

i.
$$(x, y) = (120, 140)$$

ii. $(x, y) = (100, 100)$
iii. $(x, y) = (150, 130)$

d. Calculate the new location of a pixel (x,y) = (135, 122.5) after warping. The matrix of control points looks as follows:

(1, 4)	(-3, 7)	(3, 8)	(4, 7)	(0, 1)	(2, 3)
(-3, 7)	(-2, 9)	(2, 7)	(3, 1)	(2, -2)	(2, 2)
(4, 2)	(3, 8)	(2, 1)	(4, 2)	(2, 1)	(3, 1)
(3, 2)	(2, 9)	(-3, 8)	(6, 8)	(3, 4)	(3, 5)
(-1, 3)	(-2, 3)	(1, 3)	(2, 3)	(8, 3)	(-4, 2)
(0,0)	(-2, 1)	(1, 1)	(-2, 2)	(1, 2)	(0,0)