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ABSTRACT
This paper describes a new technique to incorporate
accurate mechanical deformations of soft tissue into
interactive training simulators designed to teach medical
procedures. The technique is based on pre-computing a
representative set of deformations accurately, then encoding
these using principal component analysis such that they can
be reconstructed quickly using a small number of shape
parameters. Learning algorithms provide the link between
haptic devices and the shape parameters. The investigation
has been carried out with simulated data representing
deformations to an elastic sphere, and it has been shown that
real time performance with realistic deformations can be
achieved.
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1. Introduction
Recently much attention has been paid to simulating
deformations of soft tissue. Applications that have been
proposed include pre-operative prediction, medical
instrument design and simulation training using computer
graphics. However there is a computational problem in
applying modern modelling techniques in simulation
training.  If the model is to be sufficiently accurate, it cannot
be computed in real time. Finite element analysis is a
suitable tool for simulation, but to make it work in real time
it is necessary to use a small number of elements, and linear
elastic behaviour. Under these conditions the results will be
highly inaccurate since it has been established that the
behaviour of, for example, muscle tissue under deformation
is highly non linear and exhibits visco-elastic behaviour and
stress relaxation [1]. All these effects can be incorporated in
a full finite element simulation, but create huge
computational demands.
To get round this problem we are investigating a method
whereby correct finite element solutions can be pre-
computed and encoded into a compact representation so that
they can be used later in an interactive simulation. The
difficulty here is that the number of degrees of freedom is
great. It is clearly not feasible to pre-compute every
deformation that can be produced by manipulating living

tissue. However, in a training context it is possible to
compute a representative set of deformations that accurately
illustrate correct ways of carrying out procedures and train
the student in these correct methods.
For example, consider the process of laryngoscopy, in
which the tongue is compressed and displaced to the side of
the mouth to give the anaesthetist a view of the larynx. The
correct procedure utilises only three degrees of freedom:
moving the instrument into the mouth, moving down and
moving to the right. To achieve a view of the vocal chords
the tongue must be deformed in a very particular way. It is
feasible to define and compute a comprehensive range of
deformed tongue shapes that would be encountered when
carrying out this procedure correctly. For training purposes
accurate simulation of these deformations is clearly
necessary for demonstrating the correct procedure. However
other, incorrect, attempts at the procedure need not be
represented so accurately, since in training the student will
be taught to avoid these actions.
Even with this restriction, we have a problem in data
handling and representation. If a shape is represented by a
set of points, from which a surface may be reconstructed,
then a very large data set is required to represent a
reasonable range of deformations. Accordingly we have
been investigating the use of principal component analysis
to encode the shape deformations.
A further problem concerns the use of a haptic device  to
simulate a medical instrument and provide tactile feedback.
We need to determine how to associate the movements and
forces of a haptic device with the deformations found in a
simulation of a medical procedure. Our proposed solution is
a trainable device to match the haptic device's outputs to the
desired parameters used by the algorithm to control the
shape of the deformable object. We investigated three
possible algorithms to achieve this, namely linear
prediction, fuzzy logic and neural networks. In each case the
models are trained from known, matching data, so that it can
produce a realistic correspondence between any movement
of the haptic device and an actual deformation.
The work here investigates these ideas in a simulated
application in which an elastic sphere is deformed by
applying point forces. The ideas are equally applicable to
constructing simulations from the results of comprehensive
finite element studies.



2. Shape Models
Principal component analysis (PCA) is a mathematical
procedure that transforms a number of possibly correlated
variables into a smaller number of uncorrelated variables
called principal components [2]. The purpose of PCA is to
determine factors that cause variation in the data set.
Principal components can be ordered by their contribution
to the total variance, the first making the largest
contribution. In many practical cases only a few components
are required to describe the majority of the variance.
Principal components are linear combinations of the
observed variables. For instance, the first principal
component in a data set of observed variables Xj, j=1,2,..,p
can be written:
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Given a set of observations X’ = (X1,X1, . .  Xp) with variance-
covariance matrix Σ , and for all j zero mean of Xj, the first
principal component PC1 is given by the vector of
coefficients ),...,,( 21 pwwwW =  having the property

that the variance of 'WX  is maximum over the class of all
linear combinations of jX 's, and subject to 1'=WW . It
can be shown that the W coefficients must satisfy the p
simultaneous linear equations:
                0)( )1()1( =−Σ WIλ                          (2.1)

where )1(λ  is the Lagrange multiplier.
 If the solution to these equations is to be other than the null
vector, the value of )1(λ  must be chosen so that:
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So we find that )1(λ  is the largest eigenvalue of Σ  and the
required solution of W is the corresponding eigenvector of
Σ , denoted by )1(W . Hence the first principal component

can be written as XWPC '
)1(1 = . Following the same

procedure for the other principal components we see that
they are the eigenvectors of Σ  ordered by the
corresponding eigenvalue.
A shape model can be defined as a vector containing all the
coordinate values of a set of characteristic points from
which a geometric shape can be re-constructed. Thus if the
geometry of an object, for example the tongue, can be
constructed from 100 anatomical surface points, then the
shape model will have 300 variables being the (x,y,z) values
of each point. Given a representative set of data we can
compute the co-variance matrix for those 300 points, and
hence the principal components.[3-6]

It is possible to represent the same data in either the original
variable space or the space formed by the principal
components. If we use the vector b to represent the shape
model in the PCA space, and m to represent the mean of the
original shape vectors X then:
                )( mXb T −Φ= .                   (2.3)
where Φ  is a matrix whose columns are the principal
components of the covariance matrix [2,3]. The inverse
transformation is:
               bmX ⋅Φ+=                      (2.4)
By controlling the components of vector b we can control
the actual shape of a deformable object defined by X. Since
b is ordered by the contribution that each principal
component makes to the variance, we can represent the
majority of the possible shapes that a deformable object can
assume by manipulating only a small number of its
elements, the rest being set to zero. This is much faster than
having to control hundreds of variables representing the
actual positions in space of each point on the object.
Furthermore, the calculations required are trivial. As we can
see from equation (2.4), if t is the number of principal
components used, we only need p.t multiplications and p.(t-
1) additions in the calculation of b⋅Φ  and another p
additions are required to compute X.

3. Haptic device models
We need to establish the relation between the outputs of a
haptic device and the shape parameters of a deformable
object. Each action on a haptic device corresponds to a
specific output, for example a force vector where the
magnitude of the force, the direction and the point of action
are defined. Having the above vector as input we must
somehow produce the vector of shape parameters b that
creates the appropriate realistic deformation. Three possible
ways of doing this were investigated.

3.1 Linear Model
We assume that there is a model of the form:
                     BfAb +⋅=∆                    (2.5)
that describes the relation between the deviation in shape
parameters and  the force vector output from the haptic
device. Second or third order models could also be used.
            CfBfAb +⋅+⋅=∆ 2              (2.6)

  DfCfBfAb +⋅+⋅+⋅=∆ 23        (2.7)
The only thing required after the formulation of the
equations is the calculation of matrices A, B, C, D. We can
find the optimal value of the matrices, A, B, C and D using
the least squares fitting algorithm.
 BAAAx TT ⋅⋅⋅≅ − 1)(             (2.8)
In our case the vector x is the vector of coefficients
describing the model.



3.2 Fuzzy Models
The Takagi-Sugeno form of a fuzzy model [7] was the
second method investigated. It uses the following type of
rules:
 If
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In the Takagi-Sugeno models the rule's consequent is a
linear function of the input variables. The parameters
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1-ra  are trained to acquire the best possible values.
The training method used is called ANFIS (Adaptive-
Network-based Fuzzy Inference System or Adaptive Neuro-
Fuzzy Inference System) [8]. It is an architecture that could
operate as a basic stage for the creation of a fuzzy
knowledge base, comprised of if-then rules. The
membership functions in each rule are set in such a way,
that the (input, output) pairs are approximated satisfactorily.
ANFIS applies two techniques in updating parameters. For
premise parameters that define membership functions, it
employs gradient descent to fine-tune them. For consequent
parameters that define the coefficients of each output
equation, it uses the least-squares method to identify them.
This approach is thus called a hybrid learning method
[9,10].

3.3 Neural Network models
An artificial neural network is a network of many simple
processors "units", each possibly having a small amount of
local memory. The units are connected by communication
channels "connections", which usually carry numeric data,
encoded by various means. The units operate only on their
local data and on the inputs they receive via the connections
[11-13].
Most neural networks have a "training" rule whereby the
weights of connections are adjusted on the basis of data. If
trained carefully, neural networks may exhibit some
capability for generalization beyond the training data, that
is, to produce approximately correct results for new cases
that were not used for training [14-16]. Furthermore, hidden
layers enable neural networks to handle complex nonlinear
problems. The most widely used training method for feed-
forward neural networks is backpropagation[17,18]. In
backpropagation 'learning' is the supervised process that
occurs with each cycle or 'epoch'   (i.e. each  time  the
network  is  presented with a new input pattern) through a
forward activation flow of outputs, and the backwards error
propagation of weight adjustments. More simply, when a
neural network is initially presented with a pattern it makes
a random 'guess' as to what it might be. It then sees how far
its answer was from the actual one and makes an appropriate
adjustment to its connection.

4. Experiments

4.1. Shape Models
In order to test the method proposed we created shape
models which encode deformations to a sphere. A variety of
different deformations to this shape were made, simulating
effects such as elastic deformation from an applied force.
Different data sets were created to test how noise, the
number of variables used and the number of different
deformations in the training set effect the method.
Data sets were constructed using 441 and 961 points (1323
and 2883 variables). Up to 10 different  deformations were
used, simulating for example applied force at point (x,y,z)
on the surface. For each deformation 11 different stages
were constructed for 11 different magnitudes of the applied
force. Three stages are shown in figure 3.1.

Each member of a data set is the complete shape vector
containing the co-ordinates defining a surface grid of points.
A data set contains a member representing each stage of
each deformation simulated. The principal components are
found for this data.
We need to use sufficient principal components, so that
most of the variation of the data is included and the
reconstruction of the sphere is achieved with minor errors.
We chose the number of components using a 'scree test'
(Cattell(1966) [1]). The eigenvalues are plotted in
successive order of their magnitude and then an elbow in the
curve is identified by applying a straight edge to the bottom
portion of the eigenvalues to see where they fit an
approximate line. The number of components retained is
given by the point, at which the components curve intersects
the straight line, formed by the smaller eigenvalues.
Having decided the number of principal components to
retain and assuming that this number is k, we form matrix
Φ , whose columns are the eigenvectors corresponding to
the k largest eigenvalues of covariance matrix. Then using
equation (2.3) we calculate all values of vector b, the shape
parameter vector, for every deformation in the data set.
Finding the maximum and minimum value of each one of
the k parameters in vector b, we can determine the range of
values the shape parameters have. By assigning the values
of each one of the shape parameters to a separate slide bar,
we change their values and reconstruct the sphere using
equation (2.4).

4.2. Creating the Haptic Device
In order to train and test the models that represent the
relation between a haptic device and the appropriate shape
parameters we had to create data sets of force vectors. For

Figure 3.1 Different Stages of one deformation



each of the deformations defined we specified a force
vector, consisting of the point of application and the
magnitude. In practice, this information could all be
obtained from finite element simulations. We used just
simulated data for this study. A further simplification was to
fix the direction of the applied force, so that it could be
specified by four values rather than six.
Applying the least squares algorithm we constructed the
first, second and third order linear models, for the above
data sets.  For the fuzzy model, we first construct the actual
model using 4 inputs (the elements of the force vector) and
1 output for a single shape parameter. This means that k
different fuzzy models are created for the k shape
parameters in vector b. The number of rules in each model is
heuristically decided so that it remains small but accurate.
Using ANFIS we now train each model to produce the final
trained fuzzy models.
Finally, for the neural network we must choose the number
of layers, the number of neurons in each layer and the
activation functions. Four input neurons and k output
neurons were used. We chose 2 hidden layers with 7
neurons for the first layer and 9 for the second. The
activation functions in each layer were chosen to be 'tan-sig'
functions. Applying backpropagation we trained the neural
network to acquire the final model.

4.3 Reconstructions
The reconstructions can be studied using slider bars to set
the values of the principal components.  Not surprisingly the
number of principal components that we need to produce an
accurate reconstruction corresponds to the number of
different deformations that we included in the data. Figure
4.1 shows some typical results. Here we created a shape
model that included four different deformations. The images
show the effect of varying the value of one principal
component while keeping the other fixed. Figure 4.2 shows
complex deformations that can be achieved by combining
ten individual deformations.
The data sets used for figures 4.1 and 4.2 represent the
sphere using 441 points on the surface. We have observed
that, when the number of deformations in the data sets
remains the same but the points representing the surface of
the sphere changes, in our case from 441 to 961, the number
of principal components extracted remains the same.
Furthermore, each component extracted from the first data
set controls the shape of the sphere in exactly the same way,
although the sign of the component may be different.
All data sets created and used have been corrupted with
white noise of some small magnitude. The errors we face,
having added noise, are of rank 10-5. These tests indicate
that reasonable noise in the data does not affect PCA and in
turn the algorithm.

Finally, we will discuss the calculations required and the
speed of reconstructing any deformation, in order to prove
the suitability of the proposed technique for real-time 3D
graphical representations. The early calculations of the
covariance matrix, its eigenvectors and eigenvalues are very
time-consuming. The time rises with the number of points
used to reconstruct the 3D object. However, this is an 'off-
line', one-time only calculation and therefore does not give
us any problems for real-time reconstruction. The

(a)

(b)

(c)

Figure 4.1 Shape reconstruction from data with
four different deformations. (a) Shows variation
in the first component magnitude, (b) the second
and (c) the third

Figure 4.2 Complex shape reconstruction
combining 10 different deformations



calculations required for this real-time reconstruction are a
matrix-vector multiplication and a vector addition. The
actual time for these calculations was measured to be less
then 0.01sec, even for the larger data set.
Therefore we can safely conclude that PCA could be
effectively used for real-time graphical representations of
3D deformable objects.

4.4 Reconstruction from a haptic device
We shall now examine the behaviour of the models used to
match the artificial outputs of a haptic device to the desired
values of shape parameters and in turn into reliable
graphical representations.
The results of the linear prediction models were
disappointing. The error in some cases was huge and the
model did not manage to capture the behaviour of our
system.
For the fuzzy model the results were much more
encouraging. The estimates produced were satisfactory as
shown in figure 4.6. The mean squares error was small and
measured at 0.003. As a result the graphical representation
of the deformation of the sphere (figure 4.7) is more than
satisfactory.

The time taken to use the fuzzy model and reconstruct the
object is small. The time to load the models was
approximately 0.45sec, but this is a one-time only procedure
occurring at the beginning of the simulation. Therefore this

delay is acceptable. The time delay of simulating the fuzzy
model and reconstructing the three dimensional data was
less than 0.01sec.  This demonstrates that the algorithm can
provide real-time 3D graphical representations.
The neural network results were the most successful (figure
4.8). The mean squared error was 9.10-5 and as a result the
graphical representations are almost identical (figure 4.9).

Loading the neural network is much faster than loading the
fuzzy model. However, the time required to simulate the
neural network, produce the estimates and reconstruct the
three-dimensional data rises to something over 0.01secs.
However it is still acceptable for real time performance.
We must note that both the fuzzy model and the neural
network have been tested with great success on data used, or
similar to those used, during training. However, their
response to a totally unknown input force vector is not so
satisfactory. For the fuzzy model the output might not be
calculated at all, be of zero value - if no rule is fired - or
have great errors and in some cases become unstable. In
those cases, the shape parameters possibly obtain values out
of their feasible range.
 On the other hand, the neural network will never become
unstable, since the range of parameters is required for the
creation of the neural network. Therefore, even for values of
the parameters that have errors, stability will be maintained.
We believe that the above problem could be easily
overcome if the identification of the models was done using
larger data sets. In that case the models would  grow, either
in terms of rules for the fuzzy model, or in terms of neurons
within the hidden layers for the neural network.

Figure 4.6: Desired and estimated output of
the fuzzy model
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Figure 4.7: Reconstructions of the sphere from
original (a) and estimated (b) data, using a fuzzy
model

Figure 4.8: Desired and estimated
output of the neural network
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Figure 4.9: Reconstructions of the sphere f
original (a) and estimated (b) data, using a ne



Computational costs would also increase, but are likely to
remain affordable.

5. Conclusions
Principal component analysis proved to be a powerful tool
for reducing the variables needed to create a three-
dimensional graphical representation of a deformable object.
We have demonstrated how, using PCA, we can control the
shape of an artificial ball, in a fast, accurate and realistic
manner.
We have examined how the resulting system behaves under
data sets containing noise and have reached the conclusion
that noise - in reasonable levels - does not affect the
performance of the algorithm. Therefore, the reconstruction
of the shape of an object using PCA produces insignificant
errors, even when using noisy data sets.
Reconstruction of the original variables turned out to be
very fast, allowing for the algorithm to be used in real-time
three-dimensional graphical representations.
A procedure is necessary for translating the outputs of a
haptic device into suitable shape parameters, so that a
realistic correspondence between actions on the device and
the deformations of the object would be achieved. Three
models were tested as means of automating this procedure.
Both fuzzy model and a neural network proved to be able of
producing very good estimates and in an extremely fast
manner.
Finally we can conclude that the results of this work
encourage us to believe that the ultimate goal of the training
simulator is in grasp for the near future.
The next stage of the work is to combine the results of our
finite element studies, in which we identified an accurate
way to simulate the compression of the tongue [1], with the
present techniques in order to build a proper simulator for
teaching laryngoscopy. This will enable us to explore the
ideas more fully.
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