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In this paper, a numerical expert system using probabilistic reasoning with 
influence structure generated from the observed data is demonstrated. Instead of 
using an expert to encode the influence diagram, the system has the capability to 
construct it from the objective data. In cases where data are correlated, instead of 
compromising the performance by wrestling with different influence structures 
based on the assumption that all the environment variables are observed, we 
incorporated the flexibility of including unobservable variables in our system. The 
resulting methodology minimised the intervention of a domain expert during 
modelling and improved the system performance. 

Global optimisation using all variables is often very difficult and unmanageable 
in probabilistic network construction. In our approach, we group all the variables 
into subsets and generate advice for these subsets of features using multiple small 
probabilistic networks, and then seek to aggregate these into a consensus output. 
We proposed a probabilistic aggregation using the joint probability of data and 
model approaches. In this approach, we avoided the very high-dimensional 
integration over all possible parameter configurations. The resulting system has 
the benefit of a multiple-expert system and is easily expandable when new 
information is to be added. 0 1997 Elsevier Science Limited. 

Key words: probabilistic network, bayesian inference, multiple-expert system, 
unobservable variables. 

1 INTRODUCTION AND BACKGROUND 

In recent years, there has been a change in the content The experimental framework of this research is to 
and methodology of research in the area of artificial design and build a fully automated endoscopic naviga- 
intelligence. It is now more common to build on existing tion and advisory system. An endoscope is a medical 
theories to base claims on rigorous theorems or hard instrument that is used for non-invasive observation of 
experimental evidence rather than on intuition.’ The the inner surfaces of the human body. It is employed 
development of probabilistic reasoning is an example of extensively in the diagnosis of colon and gastrointestinal 
the former and the latter is well represented in the field tract diseases. Its main body has a flexible shaft with a 
of neural networks. The probabilistic reasoning manoeuverable tip which is usually inserted through a 
pioneered by Judea Pearl’ marked a new acceptance natural body opening. The orientation of the tip can be 
of probability and decision theory in AI. The controlled by pull wires, or by some motorised controls. 
belief network formalism was invented to allow efficient The tip has optical fibres to provide a cold light 
reasoning about the combination of uncertain evidence, source for illumination and the visual feedback which 
represented as probabilities. To date, the expert systems is connected to a monitor screen and/or a frame 
employing probabilistic reasoning are still dominant grabber5 for computer processing. Besides the viewing 
in medical related applications.3T4 Applications of facility, there is a suction mechanism, an air-blowing 

probabilistic reasoning in other areas, where domain 
experts are fewer or not available, are relatively limited. 
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mechanism, a water jet and an extra ‘operating’ channel 
that allow the passage of flexible miniature operation 
instruments. 

The first work on endoscopic navigation was done by 
Khan and Gilliess-7 and it is set out in Khan’s PhD 
thesis ‘Machine vision for endoscope control and 
navigation’. Their main contribution was in the signal 
level processing which they implemented using one 
single dominant feature for lumen recognition. They 
proposed two methods of identifying the lumen. The 
first method used contour extraction. Contours are 
extracted-by edge detection, thresholding and linking. 
This method requires images to be divided into over- 
lapping squares with overlapping resolutions (8 by 8 and 
4 by 4) where line segments are extracted by means of a 
Hough transform. Perceptual criteria, such as proxi- 
mity, connectivity, similarity in orientation, contrast 
and edge pixel intensity, are used to group edges both 
strong and weak. This approach is called perceptual 
grouping. The second method they implemented is 
based on a region extraction and merging approach 
with spatial domain data. They used an N-level quadtree 
based pyramid structure to find the most homogeneous 
large dark region, which in most cases will correspond to 
the lumen (centre line of the colon). The algorithm 
processes the quadtree from the bottom (pixel level) up, 
recursively and computes the mean and variance of each 
region of the image corresponding to a quadtree 
node. On reaching the root, the largest uniform seed 
region, whose mean corresponds to a lumen is selected. 
The method works with ‘local’ pixel information using 
variance within a small region of the image to determine 
the most uniform seed region. Khan’ concluded that 
the second method is the simplest of the two in 
determining the insertion direction and the easiest to 
implement for a real time application. He implemented 
the system with the simple crisp logic of if-then-else 
coupled with some experimental thresholds for the 
decision making. 

In addition to Khan and Gillie’s development, which 
is based on two-dimensional information, in the form of 
regions and contours, the use of three-dimensional 
shape could provide additional information that will 
enhance the system’s capabilities. A two-dimensional 
colon image does not give direct information on the 
three-dimensional shape of the world. Shape or depth 
information from an image can be estimated by various 
methods. A technique particularly suitable for endo- 
scopy is the shape from a shading algorithm developed 
by Rashid,’ who assumes a point light source very close 
to the camera. This lighting model is a good approx- 
imation to a real endoscope. His shape from a shading 
algorithm obtains the relative depth of the colon surface 
in the image. It is simple and fast so it is suitable to be 
applied in real-time for navigation. The shape from the 
shading method reconstructs the surface normals (p, q,- 
1) at a set of points in the image. The normals that we 
obtain from low-level processing consist of one vector 

(p, q) per pixel that gives the orientation of the surface at 
this point with respect to two orthogonal axes (x, y) that 
are perpendicular to the camera axis (z). If we assume 
that the colon has a shape similar to a tube and in the 
image only a section of the internal wall of this tube is 
observed, then a reasonable approximation of the 
position of the centre of the colon (lumen) will be a 
function of the direction in which the majority of the (p, 
q) vectors are pointing.’ Although it was necessary to 
assume that the colon has Lambertian surfaces, the 
results could still be used to give a reasonable statistical 
estimate of the lumen position. 

Sucar and Gillies” utilised both the above methods 
for signal level processing and implemented an advisory 
system for the control level based on Pearl’s’ probabil- 
istic networks. In their design, they solicited the 
influence structures from the endoscopic expert, and 
the conditional probabilities are encoded by frequency 
count (the occurrence or observation of events given 
that some events have been observed). This created the 
first artificial intelligence system for navigation in the 
colon. Up to this point, there were two signal processing 
models in the system, which are analogous to two 
independent domain experts that provide independent 
opinions. Sucar and Gillies fused the posterior prob- 
abilities of these two outputs into a global output by 
utilising a naive Bayes structure. 

In order to complement the short comings of the two 
models and to look into the problem from another 
perspective, well devised and implemented a new 
Fourier domain method that uses global pixel informa- 
tion which is less sensitive to noise. As the Fourier 
transform extracts global information in the spatial 
domain, we also have an indication of the direction of 
search for the lumen even if it is out of the colon image. 
Since real time performance is required, we also 
simplified the mathematical equations by reducing the 
two-dimensional fast Fourier transform into two one- 
dimensional transforms for real-time processing. To 
minimise the edge discontinuity problem that leads to 
mis-classification we used a tapering window in the 
spatial domain. The results that we obtained demon- 
strate that the method is highly effective in identifying 
the lumen position and provides useful features for the 
advisory module. 

The feature extraction modules described above form 
the first stage of the complete endoscopic navigation and 
advisory system. The next step is to devise the correct 
model for the ‘control level’ processing which will 
incorporate the information from the region segmenta- 
tion model, shape from shading model and Fourier 
domain model. In the next section, we will outline the 
approach to construct the probabilistic networks from 
the objective data extracted from the above modules. 
We will also discuss our approach to modify the 
network when we find the recovered structure cannot 
represent the observed data faithfully. Finally, we will 
present our strategies for building smaller sub-networks 
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(branches of global net) to reduce the complexity of the 
network and the aggregation formulation. 

2 PROBABILISTIC NETWORK 

In his analysis of knowledge representation schemes for 
high level vision, Sucar12 has shown that classical logic 
provides a theoretical framework for inference in 
deterministic systems but not for probabilistic systems. 
Provant3 also argues that logic is an inadequate know- 
ledge representation language for high level vision. In 
the research for representing and reasoning under 
uncertainty, there are not yet a general and widely 
accepted theorem and methodology. However, it has 
been accepted that numerical models should be used. 

In real world problems (not restricted to high level 
vision), uncertainty in qualitative and quantitative 
information can arise from many sources: qualitative 
information based upon some procedures may be 
unreliable, it may be incomplete, ambiguous or incon- 
sistent; quantitative values of variables are not exact as 
they are estimated from some mathematical model, and 
all information and data gathering processes incur some 
random elements and inaccuracies. Consequently, the 
implementation and the execution of the inference 
process, which depends on the application of a metho- 
dology, model selection criteria, and so on, also subject 
the system to further uncertainty (commonly known as 
the uncertainty about the model). Clark,14 Sucar12 and 
Ng and Abramson” had summarised and compared the 
concepts and approaches for the various techniques that 
have been devised for uncertainty management in 
artificial intelligence and expert systems. In real world 
problems, especially data oriented experiments, most 
evidence and hypotheses can be assigned to an exclusive 
and exhaustive list or approximated by virtual 
evidence.21’6 Hence, the Bayesian approach is quite an 
adequate tool for a variety of modelling problems.‘7-22 

The most well developed Bayesian approach is the 
probabilistic network, Which is also known as a 
Bayesian network, belief network or causal network. 
As the name implies, it consists of graphical structures 
(networks) used for representing the relationships and 
interactions between variables. It encodes and represents 
the conditionally independent information which is 
frequently derived from some subjective knowledge 
base. The second component of a probabilistic network 
is the matrices that store all the beliefs and likelihood 
information for every possible mutually exclusive and 
exhaustive state of the variables. 

The most commonly used influence structure is singly 
connected. Given a singly connected probabilistic net- 
work, consider a general fragment of the network 
around a node, N, with multiple parents and multiple 
children as shown in Fig. 1. The set of all N’s parents is 
denoted as U = { lJ1, U,, . . . U,,,} and the set of N’s 
children is denoted as Y = { Y,, Y2, . . . YIrI}. Let E 

Fig. 1. The parents and children of a typical single connected 
node N. 

represent the evidence set, then the posterior probability 
of a query node N, Bel(N), is 

P(N/E) = P(N/E+,E-) 

= W-/E+, WOVE+) 
P(E-/E+) 

= P(E-/N)P(N/E+) 
[P(E!,E+ ,1 

x P(E-/N)P(N/E+) 

Bel(N) = arX(N)r(N) (1) 

using the Bayes’s theorem and the conditional indepen- 
dence property. 

Pearl (see Chapter 4 of Ref. 2) derived the propaga- 
tion rule for each element, n, of the query node N, as 
follows 

Be/(n) = ax(n)rr(n) (2) 

The belief, posterior probability, of each element of N, 
n, is the product of the X value, x(n), which consolidates 
all the evidence contribution from its children and the R 
value, r(n), which consolidates all the evidence con- 
tribution from its parents; (Y is a normalising constant 
which is the joint probability of the total evidence. 

From Pearl’s derivation, 

IYI 

W = jJ AYE@> 
i=l 

where X messages, x,(n), are the posterior probabilities 
of each child with the evidence from itself and its 
descendants reformatted to the dimension of node N. 

IV 

r(n) = C P(nlu) n TN(ui) 
cl i=l 

(4) 

The r value is analogous to the posterior probability of 
node N with all evidence from its parents U. The 7r value 
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involves the marginalisation over each dimension of a 
parent Uj together with its r message, rv(uJ, where each 
?r message represents the posterior probability of each 
parent given the evidence from itself or its predecessors. 

P(n, e) Bel(n) = - = 
bel(n) 

p(e) c bel(n) 
N 

On the basis of the exhaustive property of the 
probabilistic approach, the posterior probability of 
node N, given all evidence, is the normalised product 
of the X value and rr value. The normalising constant 
represents the joint probability of evidence from all 
predecessors and successors. 

After the node N has received a message from one of its 
children or parents, it has to send updating information to 
all other parents and children since it has revised its 
posterior probability. This information takes the form of 
rr messages and A messages away from N. 

The X message is derived as 

Wui) = P F x(n) & Wu) JJ ~L&R) (6) 
k.& k#i 

The X message combines all the evidence from all other 
parents, in the summation over uk, together with the X 
value, which has fused all the evidential information 
from all the children of N, and represents the total 
evidential information that is required for Ui to update 
its posterior probability. 

The rr message is derived as 

Bel(n) 
7rr,(n) = a- = 

+(n) 
Bel(n) lxya (+-I 

The K message that is propagated to a particular child is 
the posterior probability of the node N without the 
evidential contribution from that particular branch. It 
can be understood intuitively as the updating message 
consolidating all the contributions from every other 
source of evidence except from the child node to which 
the message is sent. 

The operating equations above deal with localised 
fusing and propagation of new evidence and beliefs 
through single connected probabilistic networks using 
messages so that each proposition (variable) will 
eventually be assigned a certainty measure consistent 
with the axioms of probability theory. Figure 2 shows 
the local variable for a node N and its links to its 
parents,pr(N), and its children, ch(N), and the messages 
going into and coming out of the processor. See page 
168 of Ref. 2 for the detailed internal structure of a 
single processor of a probabilistic network. 

3 PROBABILISTIC REASONING FOR 
CONTINUOUS VARIABLES 

The work in the above section addressed the problem 

n messages 
from parents, pr(N) 

I I value 

I ~~ A value 

A messages 
from the children, ch(N) 

n messages 
to the children, ch(N) 

Fig. 2. The block diagram showing flow of signals in a generic 
node of the probabilistic network. 

of information fusion and propagation for discrete 
variables. These approaches are well suited for a 
situation where information is propositional and the 
conditional probability matrices are in the form of a 
contingency table which quantifies the association 
between the variables. However, in a natural environ- 
ment there are quantities that are better thought of as 
continuous, linear or monotonic in nature. Measure- 
ments like time, weight and money, where the resolution 
may be fine, may require some compromises when 
handled by discrete variables. A possible solution is to 
quantise the continuous variables to discrete representa- 
tion, and this has advantages in some situations. 
However it is often expensive both in memory use and 
computation time, especially if high precision is 
required. If the variables involved in the reasoning 
process are all continuous and can be represented by 
some known probabilistic density functions governed by 
some parameters, it will be better to use an efficient 
message propagation scheme for continuous variables. 
Such a scheme only sends parameters about the 
probabilistic density function to its neighbour given 
the observed information. In our work on the endo- 
scopic navigation and advisory system, we have more 
than one mathematical model to estimate the lumen 
location. To combine all the estimates from the various 
models we proposed the use of a continuous probabil- 
istic network where the uncertainties are approximated 
by Gaussian distributions. Figure 3 shows the informa- 
tion involved in the reasoning about the location of 
lumen. 

Figure 4 shows some of the images where all the three 
models provide estimation of the lumen location. In 
these images, the cross is the estimated location of 
the lumen by the Fourier domain model with an 
ellipse indicating the estimated size of the lumen; the 
square is the large dark region estimated by the 
region based segmentation model and its centre will 
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Fig. 3. Continuous probabilistic network for estimation of the lumen location in the navigation module. 

be the estimated location of the lumen and the 
diamond in the image represents the estimated 
location of the lumen by the shape from shading 
algorithm. 

Examples of the continuous variables to be decided 
are the system output, x and y, from individual model 
outputs x1, x2, x3, yl, y2, y3. If we assume the estimation 
in the x and y directions are independent, we can use one 
continuous probabilistic network for each set of 
variables, namely {x, x1, x2, x3} and {y, yl, y2, y3}. The 
simplest probabilistic network that is adequate to model 
the pooled estimate and variance for x is shown in Fig. 
5. A similar structure is also used to pool the estimates 
for y. 

(d) 

25 

The propagation rule for continuous Gaussian 
variables is derived with the following assumptions: 

(1) All interactions between variables are linear. 
(2) The sources of uncertainty are normally distrib- 

uted and are uncorrelated. 
(3) The causal network is singly connected. 

In the continuous probabilistic network, the r and X 
messages are characterised by the means and variances 
of their Gaussian conditional densities. The derivation 
for a general single connected network can be found in 
Pearl.2 The operating equations for data fusion for Fig. 
5 are summarised as follows. 

Fig. 4. Estimated lumen location by all three models. 
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Fig. 5. Probabilistic network for estimation of x co-ordinate of 
lumen location. 

The message from the parent of x is 

rx(Uj) =f(Ui/e’) = N(Uj; $7 jJ$) (8) 

In eqn (8), it is said that the evidence from parent Ui, 
depends on the mean and the variance of the ui governed 
by a Gaussian density function. These are the only two 
parameters that must be communicated to x. Since x is 
the root node in Fig. 5, we have n,(uJ equal to a flat 
improper density function with unity mean and infinite 
variance. Hence the only contribution will come from its 
children. 

X,(x) =f(e,T/x) = N(x; +, &) (9) 

The A message from either of the children, say xi, is also 
governed by the Gaussian density function. The two 
parameters that must be communicated are the mean 
and the variance from the child. 

Knowing the parameters that node x receives, we 
have to update its x and X values as in the discrete case. 
Similar to what it receives, its 7r and X values are each 
quantified by their means and variances. 

For the X value, 

(10) 

which is exactly the pooled mean and variance as used in 
classical statistics involving blocked data.23 

Since there is no parent, the 7r value will be 

0; = Co 

L4r = 1 (11) 

which guarantees a flat distribution that has no 
preference to any value at all. 

The posterior probability density function for x is 
fully specified by 

(12) 

3.1 Estimation of parameters 

Putting everything together in our system, we first 
estimated the variance for each model that provide 
estimates of the lumen location. In order to achieve that, 
we collected 100 images at random and used an expert’s 
opinion to identify the centre of the colon (lumen), [xr, 
yr]. We then ran each model to find their estimated co- 
ordinates, namely [x1, yt] for the region based segmen- 
tation estimate, [x2, y2] for the shape from shading 
estimate and [x3, ,v3] for the Fourier domain estimate. 
Variances of these methods were then computed by 
summing all the squares of differences and divided by 
the degree of freedom. Table 1 summarises the variance 
in the x and y co-ordinates (in pixels). 

From the variance in Table 1, evidently the Fourier 
domain model has the most influence in the pooled 
estimate of the lumen co-ordinate in both the x and y 
directions, which can be explained by its use of ‘global’ 
information. 

4 PROBABILISTIC REASONING FOR ADVISORY 
MODULE WITH OUTPUT FROM SIGNAL 
PROCESSING MODULES 

Beside the navigation module, we have pictorial 
recognition and advisory module to generate advice 
for the endoscopist. This module is a numerical expert 
system that will aid an endoscopist in decision making 
by suggesting the right course of action with expert 
information. Figure 6 shows the information flow of 
probabilistic networks in our advisory module. 

In the advisory module, the output from the system is 
usually propositional. For example in the application to 
endoscopy, it can be: push the endoscope; pause and 
search for lumen; pull back; inflate to open the intestine; 
suck to clear away the fluid, etc. Since these propositions 
represent alternatives that are mutually exclusive and 
further assumed to be exhaustive by including an 
‘others’ proposition to replace the ‘etc.’ to complete 
the list, we can model the system with probabilistic 
network(s). 

5 CONSTRUCTING 
OBJECTIVE DATA 

A NETWORK FROM 

A numerical expert system often consists of many sub- 
systems, each with an associated probabilistic network. 

Table 1. Variance for each model in estimating the lumen 
locations in x and y co-ordinates (in pixels) 

Variance C? (standard deviation) 

Model name X Y 

Region segmentation (1) 113.97 (10.67) 158.41 (1259) 
Shape from shading (2) 435.35 (20.86) 968.38 (31.11) 
Fourier domain (3) 92.03 (959) 107.89 (10.38) 
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Fig. 6. Block diagram of various levels of processing in our endoscopic advisory and control system for advisory module. 

They can be considered as branches in the total network. 
In the simplest approach, we assume that all the 
interacting variables are observed and we want to 
construct a probabilistic network for each sub-system, 
which we simply call a model, using all the observed 
variables. The observed data, together with the topol- 
ogy, derived from a knowledge base, will be translated 
into prior and conditional probabilities for each state of 
the variables. In order to determine the mapping from 
the problem to the solution space, the probabilistic 
network knowledge based system must be constructed 
from available data and information. 

In the closed world definition, if V is the set of all 
interacting variables {Vi, V2, V3, . . .} for a model, then 

P(V) = n P( Vi/Pr( vi)) 
v,cv 

Vi,Pr( vi) C v (13) 

where pr( Vi) is the parent of the variable I’i. In other 
words, the joint probability of P(V) can be expressed as 
the product of the conditional probabilities of each 
variable given the state of their parents and V is the set 
which contains all the possible combinations of Vi. 
(Throughout the text we use boldface to denote a 
collective of variables and italic to denote a variable. In 
general, lowercase letters are used to refer to an element 
of the corresponding uppercase variable.) 

If we assume that the extracted features, denoted as 
variables V, are all that exist and are required to model a 
system, then we would expect to have observed data for 
all nodes in the desired network (maybe with occasional 
missing data for some elements). Many researchers have 
developed algorithms for constructing the network topol- 
ogy from empirical observations.*&** Most of their 
algorithms are improvements of the maximum-weighted 
spanning tree algorithm first formulated by Chow and 
Liu29 which utilised a mutual information measure. 

Chow and Liu29 defined a divergence measurement 
between the true (measured) distribution P and the tree- 
dependent distribution P, as 

W) w, Pt) c P(X) log---- 
Y pt 6) (14) 

which in fact is the cross-entropy measurement of the 
true distribution and the distribution encoded in the tree 
network. Using eqn (14) and only second order 
statistics, they choose the best approximated tree 
structure of the nth distribution by a n - 1 second 
order distribution (the conditional probabilities) and 
one first order distribution (the prior probability of 
root). They derived the following equation using eqns 
(13) and (14) 

1x1 IX/ 
I(P,Pt) = -CZ(X,,Pr(Xi)) + CH(X,) - H(X) 

i=l i=l 

(15) 

In the above equation, H() is the entropy measurement 
of a (marginal) distribution. I() is the cross-entropy 
measurement between two distributions and pr() repre- 
sents the casual parent as in eqn (13). Since the last two 
terms of (15) are constants, minimising the divergence is 
equivalent to maximising the first term, the total branch 
weight. Hence, their algorithm is known as the max- 
imum weighted spanning tree (MWST). 

These types of maximum connection weight algo- 
rithms have the big advantage of not needing to consider 
all the possible trees that could be constructed from 
purely objective data. However, the possible ignorance 
of some interacting variables will generate many 
probabilistic networks that could closely approximate 
the given observed data. 

During influence network construction, it is always 
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assumed that the variables starting from the same parent 
are conditionally independent. In practice, this assump- 
tion may not hold during validation, and ignorance of it 
will give rise to incorrect inferences. 

Many reported works did not explain the validation 
process. In this section, we will look at the criteria to 
validate conditionally independence and we will look 
into the strategy of using hidden nodes as unobservable 
variables to model the dependency in the following 
section. 

To depict the causal relationship graphically, the 
variables will be represented by vertices (nodes) and 
their relationships by directed edges (links). If A and B 

are two variables and the parent of B, p(B), is A, then A 
and B will be linked by a directed edge with an arrow 
pointing from A to B. In most modelling applications, 
the underlying structures for the observed variables are 
assumed to be tree-structured. Because of this assump- 
tion, we can investigate the conditional independence in 
the minimal case of three adjacent nodes, called a triplet. 

Figure 7 depicts the three possible types of adjacency for 
a triplet in a polytree. In types (a) and (b), variables B 

and C are both conditionally independent given A. Type 
(c) however, depicts the relationship that B and C are 
conditionally dependent given A. If we have a star 
structure, we will decompose it into triplets for 
verification. 

In the probabilistic networks, the influence diagram 
represents purely qualitative relationships and the 
probability distributions, P, will encode the quantitative 
values of the distribution. Hence validating conditional 
independence, under the assumed causal relationship, is 
of utmost importance, and we will now discuss two of 
the criteria that we used in our system. One criterion is 
derived for continuous Gaussian variable triplets and 
the second criterion is derived for nominal variable 
triplets that represent two opposite types of distribution. 

5.1 Conditional Pearson’s test 

The first is a classical statistical approach called the 
conditional Pearson’s correlation coefficient test. It is 
best suited for continuous Gaussian variables. The test 

A 

A B C 

(a) (b) Cc) 

Fig. 7. Three possible types of adjacent triplets in a polytree. 

validates the conditional independence assumption for 
the children’s distribution over the parent’s distribution. 
If, for example, suppose that there are three variables A, 
B, C and we want to test whether B, C are conditionally 
independent given A, that is to say: 

P(A, B, C) = P(A)P(B/A)P(C/A) 

Let the covariance matrix of the variables set {A, B, C} 

be: 

coV(A, By C) = 

r * . r _ 

COV(B, C, A) = 

x[cAB aACl = 

We use the correlation coefficient (p), which defined for 
any two variable sets {B, C} given the assumed parent 
set {A} as: 

dB, C/A) = 
Cow(B, C/A) 

dVar(B/A) Var(C/A) 
(17) 

The p(B, C/A) means that correlation coefficient (p) is 
obtained through conditional covariance and condi- 
tional variances. A high correlation coefficient between a 
pair of variables, given their parent(s), indicates that the 
conditional independence assumption is weak.30 

5.2 Conditional mutual information criteria 

The second test is based on information theory and 
shares several common properties with the contingency 
table statistics for nominal data. This approach uses the 
conditional mutual information criteria to validate the 
conditional independence assumption).24 The condi- 
tional mutual information for variables {B, C} given 
A, denoted by I(B; C/A), is defined as: 

(18) 

where lower case a, b, c represent the members of A, B, 
C. 

5.3 Procedures to improve the influence structure 

Our strategy for improving the network is as follows. 
First, we calculate the conditional dependency values 
using both criteria and a performance measure (which 
we will discuss shortly), and then we modify the 
influence diagram. Following that we recalculate the 
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conditional dependency values for both criteria and the 
new performance measure. We accept the modification 
if both criteria improve or one improves without 
worsening the other and the overall performance is 
improved. It is important to note that these criteria are 
derived for different distributions, and we cannot expect 
to have real life data that are completely conditionally 
independent according to both criteria. The data have 
either nominal independence or ordinal independence. 
We believe this qualitative approach is rational since we 
do not have the information to define an exact criterion 
for our data. 

6 COPING WITH HIGHLY CORRELATED DATA 

In the earlier work,31 the advisory module was built with 
QUALQUANT methodology which assumes an expert 
who can identify all the conditional independence for 
the feature variables. However, during validation, there 
were dependencies that were not identified by the 
domain expert. To overcome the problem, Sucar and 
Gillies suggested a methodological solution, namely 
consultation with experts, to derive a node that makes 
the two independent variables conditionally indepen- 
dent. However, it will, in general, be a very difficult 
process for the expert to define a function that will 
combine the information from the two evidence vari- 
ables into a coherent variable. Hence, we devise a way to 
create a hidden node3* based on the statistical distribu- 
tion of the two evidence variables and an objective 
function that satisfies the axioms of conditional 
independence in the framework of the probabilistic 
methodology. Our approach is to use the training data, 
without seeking expert opinion, to define a mapping 
which will fuse the dependent information. 

6.1 Using hidden nodes as unobservable variables 

In order to determine the conditional probability 
matrices for the hidden node, we use a gradient descent 
method. The objective function to be minimised is the 
squared-error between the measured and computed 
values of the instantiated nodes. Let the variable A 
have A states and a set of training data be denoted 
E E 3 if we are interested in the posterior probability 
(belief) of A given some evidence E, denoted as Be/(A). 
Then we express Bel(A) as a non-linear function of all 
the evidence 

Bel(A) = f (E) 

One formulation is the expectation of the squared-error 
cost function, A, and is 

k[D(ai) - BeZ(ai)]* (19) 
i=l 

where E{.} is the expectation operator, and D(ai) is the 

desired value of ai. Using the joint probability of the 
input and the desired output, we3* have shown that 
when the network parameters are chosen to minimise a 
squared-error cost function, the outputs are the condi- 
tional expectations of the desired outputs which mini- 
mise the mean-squared estimation error. 

e[E{D(ai)/E) - (&/(a,))]* 
i=l 

In eqn (20), E{D(ai)/E} is the expected belief of A given 
the evidence E, and 

E{WaJIEl = 5 ~(aJP(ajlE) 
j=l 

is the conditional probability of desired states given the 
evidence E, weighted by the instantiated value of the 
states vector. 

In probabilistic networks, there is no strict direction 
of signal flow, and so queries can be made at any node in 
the network. Thus the training data set X is an 
unordered collective {Xi, X2, X3, . . . , Xixl}. Since prob- 
abilistic networks must be able to handle partial 
evidence, where some nodes remain un-instantiated, 
we must use a formulation to encompass situations: 

(21) 
In our experiments we found that if we encompass both 
forward and backward propagations to compute the 
node probabilities, we can achieve very good results. 
When using a chained rule to perform partial deriva- 
tives, we have shown that the error gradients can be 
treated as updating messages and can be propagated in 
any direction throughout any singly-connected network. 
We use the simplest node-by-node creation approach for 
parents with more than two children. We tested our 
approach on different networks in an endoscope 
guidance system and, in all cases, demonstrated 
improved results. 

6.2 Using orthogonal transformation for subsets of 
co-exist features 

A hidden node approach is a very general method, 
however, it increases the complexity of the model,30 and 
in the worst case, for n observables, we may need (n - 2) 
hidden nodes. Furthermore, with the introduction of 
hidden variables, there is a need for an iterative process 
(typically 100-1000 epochs) to search for a near optimal 
solution. The related issue in practical implementation 
of the searching strategy itself is a big area of research 
(operational research) and is covered extensively in Ref. 
30. The use of an orthogonal transform need not involve 
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the same increase in network complexity, however, it 
maps a set of n observed data to a new set of data. The 
link matrices (conditional probabilities) can be con- 
structed in one pass as the required topology is the 
simplest naive Bayes’ structure. 

A [Advice] 

? 

The networks used in the endoscope control and 
advisory system have the following common character- 
istics: (1) the features for each sub-system always exist 
concurrently; (2) the query node is usually the root 
node; (3) the evidence nodes will never be queried in run 
time, where the most probable configuration is not of 
interest to the user. For example in the Fourier domain 
sub-system, we never terminate the software execution 
when one or two features are extracted. The difference in 
running time for extracting just the value [X-size] as 
opposed to all three values ([X-size], EY-size] and 
[Energy]} is marginal, since these features are estimated 
from some common intermediate data. Knowing the 
behaviour of our feature extraction algorithms inspires 
us to perform a transformation with these data sets into 
a new orthogonal space by assuming that the data can 
be approximated by multi-variate normal distribution.33 

Post-processing to combine the 
results for all sub-models 

The transformed variables for the Fourier domain 
sub-systems in the endoscope control and advisory 
system are as shown in Fig. 8. In order to avoid 
confusion with the probabilistic link of the probabilistic 
networks, we use solid lines and arrows to represent the 
causal links of probabilistic networks. Dashed lines and 
arrows indicate the direction of flow of data and 
information. For the sub-model, the residual sum-of 
squared error reduced from 0.1530 without orthogonal 
transformation to 0.1008 after transformation using a 
naive Bayes structure. This represents around 85% 
correct prediction if we use l-of-m state discrete 
representation where the highest posterior probability 
is taken as the recommended state. Similar orders of 
improvement were observed in other sub-models. In Fig. 
8, the mathematical model where the information is 
fused in the post-processing is another probabilistic 
network. 

[X-size] IV-size1 [Energy] 

Fig. 8. Endoscope control and advisory system with orthogo- 
nal transformation. Solid lines and arrows represent the 
probabilistic networks. Dashed lines and arrows indicate the 

direction of flow of information. 

7 MULTIPLE SUB-MODELS 

expect a consensus since each model utilises a different 
feature extraction model, Due to the lack of unanimous 
results, some co-ordination mechanism is necessary to 
arrive at the final decision. The easiest strategy is to 
discard all but one model that is supposed to give the 
best advice. Although this is a common strategy, many 
researchers feel it is only appropriate as a last resort. 
Another ambitious strategy is to build a global network 
for all the extracted information. 

In section 6, we discussed the strategies to cope with It is well known that global optimisation using all 
correlated data. In this section, we cover the macro-level findings is usually very difficult and unmanageable. In 
of task diversion. Teams, groups, committees and panels our approach, we used multiple probabilistic networks 
play an important role in the modern world. The for subsets of findings. The reasons are as follows. First, 
decision maker, chairman or leader should derive a to build a global network that processes all the findings 
consensus or select the best approach among all the is a formidable task. There are many possible interac- 
contributions. In our system, we use multiple models at tions between all observed variables and it is difficult to 
the micro-level, similar to the distributed system understand, encode, verify and modify the interaction 
approach where each model represents the knowledge between them. Secondly, the domain expert, when given 
of an expert, to ‘look’ at the colon image from a all the observable variables, usually utilises only a few 
different viewpoint. Each of these models offers its ‘important’ features for inference. Thus we propose to 
advice from the relevant findings. Since all the findings generate ‘local’ results from subsets of feature extraction 
are derived from the colon image, the differing pieces of models and use a posterior processing model to fuse 
advice are dependent on each other, but we do not these individual results into a global solution. This 



Probabilistic reasoning and multiple-expert methodology for correlated objective data 31 

approach has proved to exhibit the benefit of probabil- 
istic multi-knowledge-base systems that combine differ- 
ent expert contributions. 

7.1 Probabilistic aggregation using the joint probability 
of the data and model 

Since the standard way of expressing the uncertainty of 
the mode126>34 in the posterior compromise approach 
involves a very high-dimensional integration of equation 
and direct evaluation of it can become impossible, we 
propose a method of expressing multiple models using 
the following pair of equations, 

PVID) = c P(N&i D)P(%ID) (22) 
k 

P(kfk/D) = P(D/hf,) 3 
The first part of (23) is the likelihood of the observed 
data configuration to be generated by the given model 
and can be easily estimated by calculating the joint 
probability of the configuration of leaf nodes using only 
the prior distribution, without any instantiation of any 
node in the model. Putting the two equations together, 
we have 

‘@ID) = p(D) k -c P(A/Mk, D)P(D/&)Pt%) 

(24) 
Since l/P(D) is common for all the models, it can be 
treated as the normalising constant and be removed 
from eqn (24). The next step to simplify this equation is 
to split the observed data D into two subsets {Dk, D_k} 
where the first subset Dk denotes all the findings that are 
relevant to the model k, and the second subset D_k 
denotes all findings that are irrelevant to the model k. 

W/D) = &- P(A/&, Dk, D-k) 
k 

P(D-k/Mk)P(Mk) 

= ; c P(A, Dk/Mk)P(D-k)P(Mk) c2j) 
k 

The first term of eqn (25) is the joint probability of 
advice with the relevant findings instantiated for the 
model. This is the non-normalised belief of the root 
node. The second term, P(D_k), is to account for the 
model predicting irrelevant findings. Since these nodes 
are independent from the model, such as [X-size] with 
respect to the region segmentation model, each of their 
probabilities will be taken as 1 over the number of states 

of the node. Doing this is equivalent to expressing total 
ignorance. This leaves us with the last term, which is the 
prior probability of the model. The simplest approach is 
to assume equal prior probabilities for each model or to 
set them using a function of performance statistics 
during training. 

Another possible strategy uses the joint probability of 
the data and model is to select the result of the model 
that has the greatest joint probability. In doing so, we 
are putting our faith in the model that has the most 
experience with the particular configuration of data such 
that 

P(W) = ~m~x[P(A,Dk/M,)P(D-k/~k,)P(M,)I 

(26) 
When we put the maximum weight on the model that 
has the most prior experience with a particular con- 
figuration, we based our decision on the most reliable 
source. Just as a decision maker would like to ask 
an expert: ‘How many cases of . . . have you seen 
before? and take that information into his decision 
process. 

7.2 Experimental result 

In our design for the endoscopic navigation and 
advisory system, we generate advice for subsets of 
features using multiple small probabilistic networks. We 
then seek to aggregate these different pieces of advice for 
a consensus output. In our experiment, we trained the 
network with 100 samples and tested the performance 
with another 290 data sets. The query node, which is 
constructed as the root node, has three possible states of 
advice and all the leaf nodes have six to ten ordinal 
states. 

Table 2 summarises the different methods of choosing 
P(Mk), which is the prior probability of the model, for 
the probabilistic posterior compromise method dis- 
cussed in section 7.1. The choices that we considered are: 

64 The prior of the model is taken as one minus the 
expected sum-of-squared error of the model 
during training: 

pc”k) = 1 - AsE@fk) 

The prior of the model is taken as one minus the 
squared root of the expected sum-of-squared 
error of the model during training: 

pc”k) = 1 - M 

(4 

(4 

The prior of the model is taken as the frequency of 
correct prediction during training. 
The prior of the model is taken as the correlation 
performance of the root node measured during 
training. 

(4 Equal priors are assigned to each model 

P(Mk) = 1 
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Table 2. Summary of the different choice of P(M,), the prior 
probability of the model, for the probabilistic posterior 

compromise approach 

Brier score (As,) 

0.1641 
0.1646 
0.1644 
0.1635 
0.1652 
0.1615 

No. correct 

0.6655 
0.6655 
0.6655 
0.6655 
0.6690 
0.7172 

(f) Choose the prediction of model with the max- 
imum joint probability of the data and model. 

P(Mk) = 03 

All values are normalised to conform to axiom of 
probabilities. 

For our experiment, a total ignorance system should 
have the prediction of 33% correct as there are three 
possible states of output. In our experimental results, we 
found that choosing the prediction of the model with the 
maximum joint probability of the data set and model 
produced the best performance. It is worth noting that 
the choice of prior for the posterior compromise 
approach has little influence on the performance in 
our system. This could be due to the fact that all our 
models perform equally well with some types of data 
and equally poorly with others. 

8 CONCLUSION 

Application of the methodology is demonstrated using 
an expert system for colon endoscopy. This provides a 
good test case because of the high degree of uncertainty 
in the knowledge and data, and the availability of real 
data from many different cases. Furthermore, with 
many independent researches to extract relevant visual 
information, we have a multiple expert knowledge based 
system with various probabilistic networks being imple- 
mented to infer from the main features for navigation. 
The system was tested with a large sample of real images 
from colonoscopy. The results show strong empirical 
evidence supporting our approach. 

Furthermore, with the introduction of hidden nodes 
or orthogonal transformation, we do not have the same 
dilemma of choosing between different topological 
structures none of which fit the data coherently. When 
a probabilistic aggregation mechanism using the joint 
probability of the data and model is used for post- 
processing of results from all sub-models, we took into 
consideration of all advices from different ‘experts’ (sub- 
models) to come to the final inference. The overall 
system for the advisory module improved its perfor- 
mance from 80% correct to consistently above 90% for 
a trained data set, and above 75% for an untrained data 
set. 

In this paper, we have presented our methods for 
handling correlation objective data in probabilistic 
networks. We have also discussed most of the relevant 
issues in constructing an objective probabilistic network 
and the methodology of multiple-expert systems. We 
verified all the algorithms in the endoscope navigation 
and advisory system. We believe our work has presented 
enough information to demonstrate the capabilities of a 
system built from objective data. We believe there are 
still numerous research areas that can be explored from 
our work. 
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