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Abstract. A Bayesian Network is a construct that is used to model a given joint
probability distribution. In order to assess the quality of an inference, or to
choose between competing networks nilntg the same data, we need
methods to dBnate the accuracy of a Bayesian networkhgitgh the accuracy

of a Bayesian network can be easily defined in theory, it is rarely possible to
compute it in practice for real-world applications due to the size of the space
representing the variables. Instead, alternative characteristics of a Bayesian
network, which relate to and reflect the accuracy, are used. A popular
formalism that adopts such methods is the Minimum Description Length
(MDL). It models the accuracy of a Bayesian network as the probability of the
Bayesian network given the data set that it models. However in the context of
Bayesian Networks, the MDL formalism is flawed, exhibiting several
shortcomings. In its place, we propose a new framework for Bayesian
Networks. We specify a measure, which models the accuracy of a Bayesian
network as the accuracy of the caimmhal independencies implied by its
structure. Experiments have been conducted, using real-world data sets, to
compare MDL and the new measure. The experimental results demonstrate that
the new measure is much better correlated to the real accuracy than the MDL
measure. These results support the theoretical claims, and confirm the
significance of the proposed framework.

1 Introduction

A Bayesian network is a construct that is used to model a given joint probability
distribution. In effect, a Bayesian network represents the relationships between a set
of variables [8, 10]. A Bayesian network does not necessarily represent causation
between a set of variables. For example, the parents of a node should not necessarily
be considered causes of the node, although they can be interpreted as such in certain
cases, instead, they should be viewed as shields against other influences.

A principal feature of a Bayesian network is the conditional independencies
between the variables implied by the structure of the network. The absence of an arc
(direct connection) between two nodes of a Bayesian network implies certain
conditional independencies regarding these nodes. However, the structure of a
Bayesian network does not imply dependencies between the variables of the joint
probability distribution that it represents. The existence of an arc (direct connection)
between two nodes of a Bayesian network does not imply dependence regarding these



nodes. All independencies implied by the structure of a Bayesian network are
considered conditional. An unconditional independence can be viewed as a
conditional independence given the empty set.

In this paper, we make three assumptions about the Bayesian network, which limit
the scope of the research. Firstly, the Bayesian network models a data set. We are not
concerned with networks that are estimated by subjective methods. Secondly, we
assume that the data set is complete, and lastly that the variables of the data set are
finite.

2 TheAccuracy of a Bayesian Network

We will start with an intuitively appealing definition of the accuracy of a Bayesian
network. A Bayesian network (BN) is accurate with respect to a data set (D), if and
only if, the joint probability distribution represented by the Bayesian network (Pgy)
matches the joint probability distribution described by the data set (Pp).

Both the joint probability distribution represented by the Bayesian network and the
joint probability distribution described by the data set can be represented as n-
dimensional matrices of states,; O...Ostateg elements, assuming the data set has n
variables, and each variable v; has stategstates. Since a matrix of n elements can be
represented geometrically as a point in the 0" space, then both the joint probability
distribution represented by the Bayesian network and the joint probability distribution
described by the data set can be represented geometrically as pointsin the ===
space. In view of the geometrical representation, the degree to which the joint
probability distribution represented by the Bayesian network matches the joint
probability distribution described by the data set is reflected by how close the
corresponding points are.

The degree of accuracy of a Bayesian network isinversely related to the distance
between the point corresponding to the joint probability distribution represented by
the Bayesian network and the point corresponding to the joint probability distribution
described by the data set.

Correspondingly, the degree of inaccuracy of a Bayesian network, with respectto a
data set, is defined as the geometrical distance between the point corresponding to the
joint probability distribution represented by the Bayesian network and the point
corresponding to the joint probability distribution described by the data set.

inaccuracy(BN) = inaccuracy(BN, D) = distance(P,, P,) D

The Euclidean distance is used as a distance measure; alternative distance
measures could be used, such asthe L1 and L2 metrics.
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The joint probability distribution described by the data set is determined directly
from the data set, while the joint probability distribution represented by the Bayesian



network is determined indirectly from the data set. The range of values for the degree
of inaccuracy of a Bayesian network is[0,v2].

Unfortunately, although the accuracy of a Bayesian network is well defined in
theory, and an appropriate measure of inaccuracy is specified, it israrely possible to
determine the degree of inaccuracy of a Bayesian network in practice for real-world
applications. Thisisdue to the fact that in most casesit is computationally unfeasible
to determine and use the joint probability distribution described by the data set,
because of both processing and storage limitations. For example, for the Hepatitis C
data set, which was used for our experimentation, the matrix of the joint probability
distribution described by the data set is 9 dimensional containing 14,696,640
elements. So, it is not only computationally unfeasible to determine the matrix, but
also virtually impossible to use the matrix in practice. Thisis principally the reason
why a Bayesian network is used to model the joint probability distribution described
by the data set, instead of the joint probability distribution itself.

3 Minimum Description Length (MDL)

We noted in the previous section that it is rarely possible to determine directly the
degree of accuracy of a Bayesian network. For real-world applications, alternative
characteristics of a Bayesian network, which relate to and reflect the accuracy, are
used to model and examine the accuracy of a Bayesian network. A formalism
commonly used for this purpose is the Minimum Description Length (MDL) [11] (see
also [4]). The MDL formalism evaluates a model of a data set based on the length of
the description of the data set. Thisisthe sum of the length of the description of the
model and the length of the description of the data set given the model. The length of
the description of the model reflects the model size and complexity, while the length
of the description of the data set given the model isinterpreted asthe model accuracy.

In the context of the Communication domain, the MDL formalism is employed in
data compression, in order to identify the model that provides the shortest description
of the data set. In this case, the length of the description of the data set is the number
of bits required to encode the data set. Thisisthe sum of the number of bits required
to describe the model and the number of bitsrequired to encode the data set given the
model.

In the context of Bayesian Networks, the length of the description of the data set
given the Bayesian network is the negation of the log likelihood of the Bayesian
network given the data set, which is interpreted as the degree of inaccuracy of the
Bayesian network. In effect, the MDL formalism models the accuracy of a Bayesian
network with respect to a data set as the likelihood of the Bayesian network given the
data set.

accuracy(BN) = accuracy(BN, D) =log,(P(BN | D)) (©)]

The likelihood of a Bayesian network given the data set is equivalent to the
likelihood of the data set given the Bayesian network.



max . .{ accuracy(BN, D)} = max
{P(D | BN)P(BN), _

BNOB P(D) 5=

maX ,,{ P(D | BN)}

since BN O B, P(D) isconstant,and P(BN) isuniform

{P(BN D)} =

BNOB

max

max g, { P(D | BN)P(BN)} = 4

The range of valuesfor the degree of accuracy of a Bayesian network, with respect
to any data set, is (-,0].

Since the MDL formalism evaluates the likelihood of a Bayesian network given a
particular data set, the specific range of values for the degree of accuracy of a
Bayesian network, with respect to a given data set, depends on the nature of the data
set. As aresult, it is not possible to determine the degree of accuracy of a Bayesian
network unless the nature of the data set is examined. The degree of accuracy of a
Bayesian network, with respect to adata set, isaffected directly by the size of the data
set [3]. Consequently, the MDL formalism can only be used to compare “relative”
degrees of accuracy for a set of Bayesian networks and for a particular data set. Any
results acquired and any conclusions drawn are valid for the Bayesian networks, only
in view of the particular data set.

Although the MDL formalism is being used in the field of Bayesian Networks, it
was initially developed for the Communication domain where the focus is the
transmission of a message. In the field of Bayesian Networks, the focus is the
construction of a network that models the joint probability distribution in a given data
set. Evidently, the semantics of these two fields are different, and thus the MDL
formalism, which has been developed for the communication domain, is being taken
out of context when used in the field of Bayesian Networks.

The MDL formalism examines the accuracy of a Bayesian network with respect to
the data entries of the data set, and not with respect to the joint probability distribution
represented by the data set.

Other formalisms that have been developed to evaluate the characteristics of a
Bayesian network are the Akaike Information Criterion (AIC) [1] and the Bayesian
Information Criteria (BIC) [14]. However, both of these formalisms are identical to
the MDL formalism with regards to the evaluation of the accuracy of a Bayesian
network. Bayesian Network learning algorithms, such as the Maximum Weight
Spanning Tree (MWST) algorithm [2], provide some sort of an evaluation scheme for
a Bayesian network. However, each algorithm is based on its own heuristic methods,
which do not specify clearly what the characteristics of a Bayesian network are, and
how these are evaluated.

4 A New Definition of Accuracy in Bayesian Networks

We have developed a formal framework for describing the accuracy of Bayesian
Networks. Full details will be found in [9], but for now we state just the central
theorems of the framework.



Given:

e Adataset (D) representing ajoint probability distribution (P ) over variables (V)

P, =P(V)

» A Bayesian network (BN ) of nodes (N ), arcs ( A), distribution (P")

BN =(N,A P")

P, =P'(N)

Provided:

» The nodes of the Bayesian network are the variables of the joint probability
distribution represented by the data set

N =V

Oi,n,ON,v,OV:n =v,

» The probabilities of the Bayesian network reflect the corresponding probabilities of
the joint probability distribution represented by the data set

Oi,n, ON:P'(n | parents(n )) = P(n | parents(n))

Then:

» The Bayesian network is accurate with respect to the data set, if and only if, the
conditional independenciesimplied by the structure of the Bayesian network are
conditional independencies of the joint probability distribution represented by the
data set

Py =P, = Oi,v, OV, OW,W Oa(v,): P(v, [W 0O parents(v,)) = P(v, | parents(v,))

We refer to the set of conditional independencies implied by the structure of a
Bayesian network as the Network Conditional Independencies (NCI) set. Our
framework introduces the NCI Soundness theorem and the NCI Incompleteness
theorem, which are remarkably significant for the field of Bayesian Networks.

The NCI Soundness theorem indicates that given a data set there exists aBayesian
network whose NCI is sound, that is the network conditional independencies also
belong to the data conditional independencies. It guarantees that given any data set it
is possible to construct an accurate Bayesian network.

The NCI Incompleteness Theorem indicates that there exists data sets (at | east one)
for which there exist no Bayesian networks whose NCI is complete. Thus given any
data set it might be impossible to construct a Bayesian network whose structure
implies al the conditional independencies of the joint probability distribution
represented by the data set.

Computationally it is feasible to measure the inaccuracy of each conditional
independence implied by the network, using a measure such as Mutual Information.
The conditional dependency measure (DM ) for variables A and B given variable C
isthe conditional Mutual Information (M1 ) for variables A and B givenvariable C.

P(AB|C)

DM(ABIC)=MI(ABIC)= 5 3 PIAB.C)Iog, oo o E10) ©

By setting C=0 we obtain an unconditional dependency measure. Using the
framework theorems and the definition of Mutual Information, it is possible to derive
the following definition for the inaccuracy of a Bayesian Network.



inaccuracy(BN) = inaccuracy(NCI )

inaccuracy(NCI NCI #[0,NCI. ONCI
inaccuracy(NCI ) = % YINC,) '
5 0 NCI =0 (6)

inaccuracy(NCI,) = DM (NCI,)
DM (NCI,) = MI(NCI,)

We call this measure the Network Conditional Independencies Mutual Information
(NCIMI) measure.

The framework facilitates the comparison of individual Bayesian networks with
regardsto their characteristics, and providesthe theoretical meansto justify when and
why a particular Bayesian network is more accurate than another Bayesian network.
The framework can clarify the procedure of the addition and deletion of arcs and
nodes from the structure of a Bayesian network [13], and provide the means to
illustrate and explain the effects of such actions on the characteristics of a Bayesian
network. The framework can supply a theoretica rationale to the process of the
introduction of a hidden node within the structure of a Bayesian network [7] and the
effects of such an action. The framework can be employed to develop Bayesian
Network construction (learning) algorithms [15] as tree search algorithms that
examine the accuracy of a Bayesian network and use the degree of inaccuracy asthe
evaluation function of the tree nodes.

5 Experimental Results

Several experimentswere conducted using real-world problems. One data set that was
used represents information concerning Hepatitis C patients, while a second data set
provides information about morphological development of neurons[6]. The Hepatitis
C data set has 1672 data entries, each being an individual Hepatitis C patient
characterised by 9 distinct variables. The neurons data set has 44 data entries, each
about an individual neuron, characterised by 6 distinct variables. At any time, only
three variables of the given data set were used to carry out the experiments and collect
experimental results. This limited approach was adopted, so that it was
computationally feasible to calculate the joint probability distribution represented by
the data set. The experiments were conducted for a collection of different data sets,
created by randomly selecting the set of variables. For a given data set, al possible
tree structured Bayesian networks that can model the given data were used to carry
out the experiments and collect experimental results.

For a given data set and a given Bayesian network, the experiments determine the
accuracy of the Bayesian network with respect to the data set. Three quantities were
computed. First, the actual degree of inaccuracy of the Bayesian network, computed
as the Euclidean distance between the data distribution and the joint probability
digtribution of the network. Secondly, the degree of inaccuracy of the Bayesian
network according to the Minimum Description Length formalism, and thirdly the
degree of inaccuracy of the Bayesian network according to our new measure.



The experimental results are presented below in atabular and graphical form. The
graphs are scatterplots of the actual degree of inaccuracy of the Bayesian network,
againgt either the degree of inaccuracy measured by the MDL, or our NCIMI
measure. Trendlines are drawn and their corresponding R? value computed. The
closer the R? value of the trendlineisto 1, the more reliable the trendline is, and the
better it fits the points of the graph. The best trendline for the points of a graph is
associated with the correlation of the variables represented in the graph. A low
correlation coefficient indicates that the variables are unrel ated.

According to the MDL formalism, the degree of inaccuracy of a Bayesian network,
with respect to a data set, is affected directly by the size of the data set [3]. For the
data sets of the Hepatitis C domain, the average degree of inaccuracy of the Bayesian
networks examined is 7858.3; for the data sets of the Neurons domain, the average
degree of inaccuracy of the Bayesian networks examined is 245.26. Thus, the average
degree of inaccuracy of the Bayesian networks for the data sets of the Hepatitis C
domain is 32.04 times greater than the average degree of inaccuracy of the Bayesian
networks for the data sets of the Neurons domain. Thisresult is not only of the same
magnitude but also very close to the size ratio of the Hepatitis C data set and the
Neurons data set, which is 38. The experimental results point to a linear correlation
between the degree of inaccuracy of a Bayesian network, with respect to a data set,
and the size of the data set, which agrees with what is predicted in theory.

The NCIMI measure does not exhibit the shortcomings of the MDL formalism. It
provides a proper error norm so that the inaccuracy of the networks for the different
data sets can be compared. It will be seen both visually and by the statistical
measures, that it reflects the true accuracy of the network much better than MDL.

Correlation Correlation R2value R2value

(HepatitisC) (Neurons) (HepatitisC) (Neurons)
MDL 0.31 0.14 0.09 0.02
NCIMI 0.97 0.73 0.94 0.53
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6 Conclusion

We have proposed a framework for Bayesian Networks, in order to examine the
accuracy of a Bayesian network. The framework has subtle similarities with research
by Pearl [10], Neapolitan [8], and Chow & Liu [2]. Further investigationisrequired to
identify these similarities, and to amalgamate these seemingly different
methodologies into a unified framework. Using the framework, we have proposed a
new accuracy measure for Bayesian networks called the NCIMI measure, which is
based on assessing conditional independencies implied by the structure of the
Bayesian network. The framework is formally established, with several definitions
and theorems, and well-defined semantics. Applying our measure to real world
problems we have demonstrated that it performs considerably better than the popular
MDL measure, which was defined for adifferent application within adifferent formal
system and with a different set of assumptions.

The data sets employed for the experiments are data sets of just three variables.
Supplementary experiments are in hand, employing larger data sets with more than
three variables. However, the data sets have to remain relatively small so that the
experiments are computationally feasible. The refinement and the extension of the
framework will result in an even greater understanding of Bayesian Networks, while
the supplementary experiments will offer further insight, and additional evidence in
support of the proposed framework.
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