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A new type of deformable model is presented that is able to combine some of the characteristics of both snakes
and templates. It can be used to segment and recognise two{dimensional objects when only vague prior knowledge
about their shapes is available. A jump-di�usion process is used to �t the template to the image. The jumps allows
the template to undergo abrupt discontinuous changes in shape and position and to decide among multiple target
models. The di�usion process allows the template to perform continuous 
owing deformations like a snake. A prior
shape model is described that uses the local and global characteristics of each di�erent target class. An e�cient form
for the image likelihood is given that extends to multiple attributes and multiple images. The jump transition kernel
de�nes the probabilities of the template jumping to a new state. This is di�cult to generate and sample in practice
though. To allow for this a method is described where a marginal transition kernel is generated by integrating over
the continuous internal parameters for subsets of jumps. This makes the sampling problem much easier while still
providing e�ective inferencing. The relation of this approach to active contours and region competition is discussed.
It is shown that with the appropriate choice of prior and likelihood that snakes can easily be modelled within the
deterministic part of the di�usion process. The method is demonstrated with the detection of buildings and planes
in infrared and optical images and a comparison with an active contour is also given.
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The problem considered here is the detection and classi�cation of approximately located objects in two{dimensional
aerial images. The intention is that this information will be used as a cue for more specialised three{dimensional
vision systems.1 In many cases image attributes alone are insu�cient for object detection. Methods that do not
use prior object information often give unreliable results. Prior information can be used in a very general way with
active contours2 or in a more speci�c way with deformable3 or �xed models.4 If a model is too speci�c however,
then detection is limited to particular instances of objects which are known and where a good match can be found.
Alternatively if a model is too general then detection may fail in cases where image attributes are ambiguous. In
the type of imagery considered here there are common classes of objects such as buildings and planes. Although the
objects in each class share many common characteristics, the level of variability makes it very di�cult to de�ne a
model to cope with a su�ciently wide range of instances of these objects. In this work a new type of deformable model
is presented that is able to combine some of the characteristics of both snakes and templates. A jump-di�usion process
is used to �t the template to the image. The jumps allow the template to undergo abrupt discontinuous changes
in shape and position and to decide among multiple target models. The di�usion process allows the template to
perform continuous 
owing deformations like a snake. In fact with the appropriate choice of model the deterministic
part of the di�usion process is equivalent to snakes. The template jumps provide an essential higher level of inference
above the di�usions however. They allow the template to sample con�gurations that are not reachable through
di�usion which can only act by local re�nement on continuous parameters. In the �rst section below the model for
the template is de�ned. The next section describes the inferencing process using jump-di�usion. In the last section
the approach is demonstrated with detection and recognition in some infrared and optical images and a comparison
with an active contour model is given.
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There are several di�erent types or classes of target in the scenes considered. Each of these classes of target have
their own particular shape characteristics. A separate prior model for each class captures these shape characteristics.
The template is allowed to choose dynamically which is the best prior model as it is �tted to the image. In turn
the prior means that the template is predisposed or biased to take on certain shapes. The prior model associates
a potential or relative probability with any given shape of the template. In Bayesian terms a prior model indicates
how well the template �ts our prior knowledge or assumptions. A given template that has a high prior probability
in a particular class would therefore be typical of the types of shapes in that class. The image is the observed data,
and is taken into account with a likelihood function which gives the probability of the observed image given that the
template is in a particular con�guration. A high probability in the likelihood therefore indicates that the template is
a good match to the image. Suppose v represents the template as an ordered set of co-ordinates of a polygon where
k is the number of co-ordinates and l associates the template with a particular class of target. Let I be the image
data with co-ordinates x and y. The prior p (v) and likelihood L (I j v) are then associated though Bayes' theorem.
Since the probability of I is constant for a given image it is only necessary to �nd the template v that maximises
the prior and the likelihood. The densities are only taken as relative probabilities because the normalising constant
for each is too di�cult to compute in general. This is not usually a problem however. The prior and likelihood are
de�ned below while the following section considers the problem of inferring the most likely template and its class.

The prior for each class measures how well the template agrees with prior shape expectations of that class. The
priors used here are based on training data that consists of silhouettes of example objects. They use a local and a
global shape measure. The local shape measure considers independently, the probability of each section of length `
vertices of the template v occurring in a shape from the class. The global shape measure is based on a feature vector
of numerical shape descriptors for which a class mean and covariance matrix is computed from the training data.5

The prior for target class l is the joint probability of these

log p (v) = �1

kX
i=1

log p
�
v`i j l

�
+ �2 log p (v j l) + I (v) ; (1)

where �i are constants. The �st term is the local shape measure. This probability density is taken from a co-
occurrence matrix of the combined frequencies of boundary angle sequences in the training class shapes. The
co-occurrence matrix for each target class is computed up to some �xed sequence length. The probability of any
given sequence up to this length can then be computed through the marginal probability density. The second term
gives the probability that the global features from the template are from a shape from the class. This is taken as
a multivariate normal distribution where �yl is a mean and Q is a covariance matrix for the class. The features are
scaled to unit variance and translated to zero mean. The third term I (v) is an indicator function which is zero
when v is non self intersecting (simple) and is a nominal large negative value otherwise. This prior uses general
shape information taken from training data. However a much more general type of prior such as minimum boundary
length or tension and sti�ness could have been used instead to give the template snake like behaviour for example.
Alternatively a more specialised type of prior could have been chosen for rectangular building like structures. An
example could be �Pi sin

2 (2�i), where �i is the angle at each vertex.

The likelihood gives a measure of the match of the template to the image. The image that is observed however is
always a degraded version of an ideal underlying image. The likelihood generally embodies some form of noise model
to allow for this. The measure used here is based on a joint probability of image region and edge attributes,

logL (I j v) = �1 logLr (I j v) + �2 logLe (I j v) ; (2)

where �i are constants, logLr (I j v) is the region term and logLe (I j v) is the edge term. The region likelihood is
the joint probability that each pixel within the region enclosed by the template belongs to the target distribution
and every other pixel belongs to the background distribution�. Let the pixel population in the target region follow a

�The background distribution refers to the whole population of pixels that do not belong to the given target type.



known distribution �� and the pixel population in the background region follow a di�erent known distribution ��.
Assuming the pixels are conditionally independent given the distribution then the joint log probability is

logLr (I j v) =
Z Z

R

log p (I j ��)dx dy +
Z Z

R

log p (I j ��)dx dy; (3)

where R is the region enclosed by the template and R is a �xed region outside the template. This can be taken
as the whole image excluding the region enclosed by the template. Equation 3 can be expressed identically as a
boundary integral using Green's theorem (see Appendix A). The only non constant term in the resulting expression
is the di�erence between the log probabilities over the target and background region and this depends only on the
boundary of the template itself. This reduces it to the contour integral

logLr (I j v) =
I
�

�Z y

0

log
p (I j ��)
p (I j ��)dy

�
dx; (4)

where � is the boundary of the templatey. The log term is the Bayes factor7 which measures the signi�cance of each
pixel under the hypothesis that it belongs to the target against the hypothesis that it belongs to the background. This
term contributes little when there is no signi�cant di�erence between the probabilities under the two hypotheses. The
integral function in the brackets depends only on the image and the probability densities of the target and background
pixel populations. These integrals are constant functions and can be computed before �tting the template. This
allows the calculation of the full region likelihood at very little computational expense. In general each target type
will have its own probability density and so both the prior and likelihood will depend on the target type. It is not
necessary for the target and background densities to follow parametric distributions such as Gaussians. It is feasible
for example that these densities could be taken from the output of another detection system.

An important part of our overall approach is the fusion of multiple image cues.1 This is quite easy here because
the image data I could just as easily be a vector of attributes such that I = (I1;I2; : : : ;In). These attributes could
include range data, texture, or multiple images for example. The joint probability is then considered over all image
attributes where each extra independent attribute provides an additional constraint. In practice it is reasonable to
assume conditional independence between the attributes given the target type so that,

p (I i j l;I�i) = p (I i j l) ; (5)

where I�i represents all other attributes except I i. The terms then sum in the log joint distribution so that

log p (I j l) = log p (I1 j l) + log p (I2 j l)+; : : : ;+ log p (In j l): (6)

This provides a way to fuse multiple image attributes and prior target shape information. It allows the use of multiple
images when the shape of the target in the two images can be described by a two{dimensional transformation. For
example let I = (I1;I2) be a pair of images and let T1;2 be a transformation that projects points from I1 into I2.
Then the region likelihood for two images is

log L̂r (I j v) =
I
�

�Z y

0

log
p (I1 j ��)
p (I1 j ��)dy

�
dx+

I
T1;2(�)

�Z y

0

log
p (I2 j ��)
p (I2 j ��)dy

�
dx: (7)

The parameters of the transformation T1;2 are either known or become part of the estimation process (see Section 3).
The second part of the likelihood function consists of an edge term so that the template is aligned with the edges in
the image. The edge likelihood using the reasoning above is

logLe (I j v) =
I
�

log
p (jrI j j �e)

p (jrI j j ��e)
ds; (8)

where jrI j is the edge map in which edge points are taken to follow the distribution �e and s is the arc length
parameter.8 Now that the probabilistic model has been de�ned for the template, the next step is to consider
estimating the template parameters for a given image. This is considered next.

yChakraborty et al.
6 �rst used Green's theorem to integrate region information. Their form however uses two integrations and partial

boundary derivatives and they integrate over a region classi�ed image rather than using a statistical test between region hypotheses.



The prior and the likelihood de�ne the posterior density of the template according to Bayes theorem. Inferencing
involves estimating the parameters that maximise the posterior probability for a given image. These parameters
include the shape, the position and the object class of the template. Inferencing from complex distributions usually
involves simulation techniques such as the Gibbs sampler9 or the Metropolis-Hastings10 algorithm. In these algo-
rithms it is only necessary to have a relative probability for each possible state of the system. The posterior density
of the template provides this,

� (v j I) / L (I jv) p (v) : (9)

The negative log of this is referred to as the energy. A transition kernel is chosen that de�nes the probability of the
system moving to a new state given the previous state. A sequence of samples from this kernel de�nes a Markov
chain. The choice of kernel can be such that the samples from the Markov chain approximate samples from the
posterior density.10 In Metropolis-Hastings sampling the number of estimated parameters is �xed. The number of
co-ordinates needed to give su�cient resolution to match the template to an object is not known a priori however.
So the number of parameters that need to be inferred is itself an unknown parameter. Also each di�erent object can
have a di�erent prior and likelihood and therefore a di�erent posterior density. It is necessary then that the system
should be able to decide among multiple target hypotheses. Finally the parameters need to be able to undergo both
discontinuous and smooth continuous changes so that the template does not converge at the �rst local minimum that
is encountered and so that it can accommodate a wide range of shapes. In the next section an inferencing mechanism
based on a jump-di�usion process is proposed which allows the template this type of behaviour.

Grenander and Miller �rst introduced a jump-di�usion11 process to infer the number, shape and position of structures
in mitochondria images. The individual templates were closed polygons with a �xed number of sides. The deforma-
tions were applied as local transformations to the tangents of a circular base template, where a prior was de�ned on
the transformation parameters. A jump component was used to search across the discrete parameters including the
addition and removal of object hypotheses while a di�usion component followed paths of mean steepest ascent in the
posterior density with respect to the local transformations of each of the objects in the scene. Lanterman12,13 also
used a jump-di�usion process with �xed three{dimensional models to interpret forward looking infrared scenes. A
method was proposed to discover the required number of objects in the image and the model alignment and position
parameters necessary to describe the scene. Green14 later developed an alternative jump algorithm that implements
a Metropolis-Hastings type algorithm where the test between states of di�erent dimensions is normalised with a
Jacobian term. A variable resolution deformable template based on this algorithm has been developed by Pievatolo
et al.

15 Rue and Hurn16 used the same jump algorithm to interpret scenes with unknown numbers of objects.

To our knowledge the templates used in all existing approaches using jump-di�usion algorithms are either �xed17,18

or evolve under di�usion from a base template according to the posterior model.11 The jumps are used to add,
remove and change object hypotheses in multiple object scenes or together with di�usions to vary parameters in
�xed models to estimate position and pose. This has been shown to be a powerful technique for objects that can be
described in terms of �xed models or deformations about a typical shape. In the application described here however,
while objects within each class may have much in common, their shapes generally cannot be predicted in this way.
In this respect the work presented here is similar to Storvik,19 Peivatolo15 and Staib et al.

20 who consider templates
to model unknown shapes. A di�erent probability model and inferencing process is used here however. Jumps and
di�usions in our approach carry out the deformations. Together these allow a su�ciently wide range of object shapes
to be modelled. The jumps permit discontinuous changes in shape, position and target model while the di�usions
permit smooth continuous 
owing behaviour.

Jump-di�usion is a Markov chain process although unlike Metropolis-Hastings algorithms a di�usion component
operates while the process is within each �xed subspace and a jump component allows transitions between di�erent
subspaces. The frequency of jumps depends on the states reachable from the current con�guration. A jump transition
intensity de�nes when and where the jumps occur. A brief description of our use of jump-di�usion is given here
though the interested reader is referred to Grenander11 and Amit21 for theoretical underpinnings. In the jump-
di�usion algorithm proposed here each �xed subspace is a polygon with a �xed number of vertices and an associated
target type. The inference process involves sampling a section of the template boundary according to the local shape



function so that the least well �tting parts of the boundary are selected most often. A marginal intensity function
is generated for the set of possible jumps from the current state of the template. The deformations are always
restricted to the selected part of the boundary. A jump from the current state is proposed when the intensity reaches
a limit that is de�ned by a sequence of exponential random variables. A jump proposal is sampled from a transition
density that is de�ned by the intensity function. The proposal is either accepted or rejected depending on the change
in probability. At times between jumps the template satis�es a di�usion equation where the continuous template
parameters follow paths of mean steepest ascent in the posterior density.

The jump set de�nes �ve possible jump types, which are namely vertex addition, vertex deletion, vertex defor-
mation, a template move, and a change of target type. It is written

J (v) =

5[
i=1

Ji (v) ; (10)

and this de�nes all possible jumps that the template can take a given time. The jump intensity function represents
the sum of the probabilities of all accessible states that the template can reach by making a jump. It indicates at
which times a jump from the current state should be proposed, and through a transition kernel it also de�nes which
jump should be taken. The (joint) jump intensity function is

q (v) =

Z
v02J (v)

q (v; dv0) : (11)

The term q (v; dv0) is the (marginal) jump intensity and de�nes the probability of the template jumping from the
current state v to a new state v0. The jump intensity used here is

q (v; dv0) = pj min

�
1;

� (v0 j I)
� (v j I)

�
d (v0) ; (12)

where pj is the constant prior probability of the given jump type occurring
z. This can be shown to satisfy Grenander's

balance condition for the given jump set and intensity function. A jump is proposed at simulation time ts such that

ts = inf

(
t :

Z t

t
s�1

q (v) dt > �s

)
; (13)

where �s is an exponential random variable with mean de�ning the jump frequency, and ts�1 is the time of the last
jump. A jump is proposed as soon as the integrated intensity exceeds the random variable �s. The jumps therefore
occur more frequently when there are high probability states that can be reached. This formulation is based on
Grenander's Gibbs jump dynamics. This provides strong inferencing capabilities, but unlike the simpler Metropolis
jump dynamics where new states are taken from the prior, Gibbs jump dynamics require integrating the intensity
function over parts of the jump set.

The jump transition kernel Q (v; dv0) = q (v; dv0) =q (v) gives the transition probabilities for all states in the jump
set J (v). The probability mass is concentrated at those jump points that provide the biggest energy decrease. The
transition kernel is impossible to generate and sample in practice though because there are an in�nite number of
possible jumps. This problem is addressed here by generating a marginal jump transition kernel

Qt (v;Ji (v)) =

Z t

t
s�1

Z
v02J

i
(v)

q (v; dv0) dt; where J (v) =
[
i

Ji (v) : (14)

In this form each element represents a relative probability for a subset of jumps where the continuous parameters
are integrated out. This can be sampled easily which now involves choosing a subset Ji instead of a jump point.
Although the jump set can be divided arbitrarily, the sampling is most e�ective when closely related jumps are
grouped together. The integration for each subset of jumps is approximated by de�ning simple priors on the internal
parameters. The estimate of the transition density is then incrementally improved at each iteration by computing the
intensities for a �xed number of jump points in each subset by sampling these internal parameters. At any instant t

zThe notation d (v0) is used to represent a measurable element of space at the new state.



the sum of the transition density over all jump subsets then also de�nes the jump times through Equation 13. The
accuracy of the marginal transition kernel depends directly on the time between jumps. In this way the transition
kernel is not computed to an unnecessarily high accuracy when a particular jump is imminent. In practice it has been
found that a small number of computed jump points gives su�cient accuracy. Once the jump subset Ji has been
selected, an internal jump point is sampled. This is easy since this only involves sampling the internal parameters
which are taken as either uniform or normal random variables. In this case these are either for a template move, a
deformation, changing the number of vertices, or choosing a new target type.

At times between jumps, the template evolves with a �xed target type and a �xed number of vertices according
to the stochastic di�erential equation

dvl;k =
1

2
rflogL (I j v) + log p (v)g dt+

p
2 dW2k (t) ; (15)

where the deterministic gradient term is the log posterior or mean forward drift potential and dW is the Wiener
process in 2k dimensions. Grenander et al. show that the drift vector for the parameters of their templates can be
expressed very concisely as a curvilinear integral (Theorem 3). In our case however, the drifts represent forces on
the template boundary co-ordinates themselves because of the direct contour representation. If the energy of the
template can be expressed as a functional of the boundary and its derivatives, then the variational force acting at each
point on the template can be derived from the resulting Euler-Lagrange equations. The deterministic component of
the di�usion equation in our case is the same as an active contour2 where the log prior is analogous to the internal
energy and the log likelihood is analogous to the image energy. The choice of probability model can easily give a drift
vector that is equivalent to snakes. In this stochastic equation the process will follow mean paths of steepest ascent
because of the random component which is approximated here with a vector of 2k independent normal variables.

Zhu et al.
22 recently developed a segmentation theory called region competition that uni�ed many aspects of active

contours and region growing algorithms. Starting from a global minimum description length (MDL) criteria on the
segmented regions they derived a force term for each point ~v on a boundary,

d~v

dt
=

�
���(~v) + log

p (I j �1)

p (I j �2)

�
n; (16)

where n is the outward pointing normal and �(~v) is the curvature. The �rst term is equivalent to the geometric heat
equation23 while the second term is a statistical force that depends on the Bayes factor between competing region
hypotheses. The statistical force term in region competition that was derived from an MDL criterion is equal to the
(functional) gradient of our region likelihood term (Equation 4). That is

r logLr (I j v) =
I
�

log
p (I j �1)

p (I j �2)
n ds: (17)

This is the drift force component due to the region likelihood in the di�usion equation (Equation 15). Zhu found
that this force was sensitive to outliers and that this could have a signi�cant e�ect in noisy images. To solve this
problem they averaged the value of the statistical force over a window with size dependent on the signal to noise
ratio of the image. In e�ect this is equivalent to convolving the log term log p (I j �1)=p (I j �2) with an averaging
�lter to generate a smoothed force �eld. The method we propose is not as sensitive however because it uses both the
likelihood energy in the jump process and the gradient of the likelihood at the template boundary in the di�usion
process. The term r logLr (I j v) can be considered as a function of the contour v and the target and background
probability distributions. Then for any two given distributions, �1 and �2, the zero crossings of the log term de�ne
a set of contours vi in the image where the statistical force in Equation 17 is in equilibrium at every point.

In the �rst experiments the template was trained with three target classes containing approximately one hundred
and eighty silhouettes of buildings, aircraft and clutter obtained from both real images and accurate object models.



Figure 1. Extracting a synthetic shape. The template starts in an initial con�guration with several intermediate states

shown up to the �nal state. The log priors are shown for the classes together with the number of vertices at each stage.

(a) (b) (c) (d)

Figure 2. The shape in 2(a) was corrupted with Gaussian noise between the markers. Figure 2(b) shows the curvature

while 2(c) shows the sampled local shape function before (solid) and after (dashed) the noise was added. Figure 2(d) shows

the sampling ratio for corrupted to uncorrupted parts of the boundary.

The global shape vector contained six Fourier descriptors, the compactness and an entropy term,24 while the local
shape density was based on sequences of four vertices. The region and edge models were taken to follow Gaussian
distributions with known mean and variance. The results in Figure 1 show the template �tting process. This noise
degraded image consists of a shape taken from the aircraft training set. The system was trained on the remaining
shapes (this was the only example of a plane of this type). The template starts in a random con�guration and the
sequence of frames show the evolution of the template up to the �nal result. The last frame shows the best �tting
template according to the maximum posterior probability. The plots show the prior probabilities (after an initial
burn in period) and the number of vertices. Figure 2 shows the boundary sampling method using the local shape
function. The shape in Figure 2(a) was taken from the training set and corrupted with Gaussian noise between the
markers. The boundary is displayed so that grey level re
ects the value of the local shape function with dark areas



indicating a low probability. Figure 2(b) shows the resulting curvature function while Figure 2(c) shows the density
generated by sampling sections of the template boundary according to the negative log of the local shape probability.
This is shown before (solid) and after (dotted) the boundary was corrupted. The height indicates the frequency at
which each part of the boundary would be selected when the template is in this state. The sharp rise in the sampling
frequency at vertices in the corrupted regions can be seen. Figure 2(d) shows the ratio of mean sampling frequencies.

Figure 3. The evolution of the template using jump-di�usion in an infrared image (top) and an optical image.

Figure 4. A comparison to show the evolution of an active contour on the same images as Figure 3. The contour is driven

by a statistical region force (Equation 16) and is allowed a variable number of vertices.

The images in Figures 3 and 4 compare the jump-di�usion template with an active contour that is driven by
a curvature and a region force (Equation 16). The contour is allowed to add and remove vertices as it stretches
or shrinks so that it is able to represent arbitrary shapes. The jump-di�usion template in the infrared image in
Figure 3 initially extends into the low contrast region by the wing in the top of the image. This part is pulled back
however by the shape constraints and the likelihood which uses energy information across the whole object rather
than just the energy gradient at the boundary. This does not happen in the case of the active contour in Figure 4.
The contour 
ows freely into the low contrast region and correction is not possible since movement is deterministic
and always in a single directionx. Similarly the shadow on the tail of the aircraft causes some distortion to the

xThis should not be confused with the region competition algorithm.



contour. The optical image in Figure 4 highlights the problems caused by local minima. The shadow cast on the tail
of the aircraft prevents the contour 
owing into this region. This is because the smoothing term also prevents the
contour from squeezing through narrow gaps. The jump-di�usion template however in the fourth and �fth frames in
Figure 3 makes a jump over this local energy minimum to reach a better global state. The constraints on the shape
also prevent the template 
owing completely into the attachment at the front of the plane. In Figure 5 the results
are shown for three further images with the active contour in the left two columns. In the �rst example the active
contour correctly represents the front of the plane but fails to extract one of the wings. In the second example the
low contrast regions and presumably local minima prevent a good representation of the house image while in the
third example both methods give comparable results.

Figure 5. Comparison with a region based active contour. The two columns on the left show object extraction with an

active contour. The two columns on the right show the results on the same images using jump-di�usion inferencing.

In Figure 6 the extraction of some buildings and planes are shown. Again the template started in a random state.
Although these objects could have been extracted much more accurately using specialised models, the important
point to note is that they were extracted using only very general models. Also, unlike region based or active contour
methods the boundaries are well de�ned and quite realistic. The high curvature points such as building corners
and the sections of the aircraft have not been smoothed and the template has not 
owed too much beyond the
object boundaries. Figure 7 shows target classi�cation. The template starts in a random state and is initially in the
unknown class. A jump to the correct class occurs as the template �ts to the building in the image. It can be seen
from the graph that the template stays in the correct class for the rest of the simulation. The target classi�cation



can either be taken as the class that the template was in at the maximum posterior state or it can be taken as the
mode of the class for the simulation. The mode should be more accurate because it is based on many con�gurations
of the template rather than a single con�guration at a point in time. The processing time for the algorithm depends
on the size and complexity of the shape and the accuracy at which the transition kernel is calculated. The plane
images in Figure 6 needed �fteen thousand iterations while the building images needed less{.

Figure 6. Extracting objects in visible and infrared images using jump-di�usion. The top row shows buildings detected in

optical images. The lower row shows planes detected in both infrared and optical images.

This work has described a new type of deformable model based on a jump-di�usion process. It can be used to segment
and classify two{dimensional objects when only vague prior knowledge about their shapes exists. This di�ers from
existing methods because the template has two di�erent types of behaviour. Jumps allow the template to undergo
discontinuous changes in shape and position and to decide among multiple target models, while di�usions allow the
template to undergo smooth 
owing deformations. A prior was introduced that de�ned a measure of the template
in terms of local and global shape properties. An e�cient form for the image likelihood was given that extends to
multiple attributes and multiple images. The template uses the energy de�ned by these measures in the jump process
and uses their energy gradients in the di�usion process. It is less sensitive than snake methods that use only gradient
information and it is less reliant on favourable initial conditions. It was shown that the jumps allow the template
to avoid local minima by jumping energy barriers while di�usion provides localised re�nement. A marginal jump
transition density was described in which a probability for subsets of permissible jumps is computed by integrating
over the continuous parameters. This is incrementally integrated over time so that its sum at any instant speci�es
the jump times. This allows e�cient computation while providing e�ective inferencing. The relationship to active
contours and region competition was discussed and a comparison was given. The proposed method is easily extended
to allow fusion of probabilistic output from other systems. In future work we hope to investigate the fusion and
recognition aspects of the system more, and to investigate other prior shape models.

{Fifteen thousand iterations take between thirty and eighty seconds on a Pentium 300 with our software which is not optimal.



Figure 7. Classifying a building target in an infrared image. The template starts in a random con�guration in the unknown

class (l = 2) and makes two jumps to the building class (l = 1) as the template is �tted to the image. It stays in the correct

class for the rest of the simulation.

Let R be the region enclosed by the template and let R be the complement of R, and let � be the boundary of the
template. The joint probability for the template across a region can then be written in log form

logLr (I j v) =
Z Z

R+R

log p (I j �
�)dx dy �

Z Z
R

log p (I j ��)dx dy +
Z Z

R

log p (I j ��)dx dy: (18)

The region R+R can be taken as �xed, the whole image for example. The �rst term is then constant so it can be
ignored in the log likelihood since constants will cancel in the Metropolis ratio (Equation 12). This leaves a di�erence
between two terms based on the region enclosed by the template R.

logLr (I j v) =
Z Z

R

log p (I j ��)dx dy �
Z Z

R

log p (I j ��)dx dy: (19)

Now Green's theorem can be used to convert this into a boundary integral. Let P (x; y) and Q (x; y) be any continuous
di�erentiable functions. Then Green's theorem can be written22Z Z

R

@P

@y
� @Q

@x
dx dy =

Z
�

Pdx+

Z
�

Qdy: (20)

The functions can be de�ned

P (x; y) =

Z y

0

log p (I j �i)dy and Q (x; y) = 0; (21)

so that Green's theorem givesZ Z
R

log p (I j �i)dx dy =

I
�

�Z y

0

log p (I j �i)dy

�
dx: (22)

Then using Equation 22 it is possible to convert the likelihood in Equation 19 into the boundary integral

logLr (I j v) =

I
�

�Z y

0

log p (I j ��)dy �
Z y

0

log p (I j ��)dy
�
dx;

=

I
�

�Z y

0

log
p (I j ��)
p (I j ��)dy

�
dx: (23)



The part in the brackets is dependent only on the image and x and y. It can therefore be computed independently of
the template and stored as a constant probability integral image so that the likelihood can be computed very quickly.
The form of the probability density is general and could be a non parametric function, for example something
generated by another target detection system.

Thanks to Tim Field, Dave Hutber and Richard Glendinning for reviewing.
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