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Abstract

Sucar, L.E., D.F. Gillies and D.A. Gillies, Objective probabilities in expert systems,
Artificial Intelligence 61 (1993) 187-208.

In this paper wc present a general methodology for handling uncertain knowledge in expert
systems, which is based upon objective probability theory. The use of objective probabilities
helps to overcome some of the difficulties in the subjective Bayesian approach. The basic
idea is to refine a qualitative assessment of uncertainty made by a domain expert into a
quantitative objective probability by measuring frequencies in data sets. Knowledge is
represented as a probabilistic network where the structure is elucidated from the experts,
and the probability distributions are estimated from a set of representative samples from the
domain. We test the hypothesis of independence between variables using lincar regression
analysis techniques. Having identified dependencies we modify the structure of the network
to account for them. We have tested our methodology by implementing an expert system for
providing diagnostic advice during colon endoscopy. Our results show strong empirical
evidence supporting our approach.

1. Introduction

The aim of the present paper is to describe a new method of handling
uncertain knowledge in expert systems. It is called the QUALQUANT meth-
odology, and is based on the use of objective probability. Some use is made of
ideas from the philosophy of science due to Kuhn and Popper. We have tested
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it experimentally, using the specific application of an cxpert system to give
advice during medical endoscopic examinations.

The general problem of handling uncertainty in artificial intelligence, and
particularly in expert systems, is very much to the fore at the moment.
Genesereth and Nilsson in their excellent book Logical Foundations of Artifi-
cial Intelligence [2] devote three chapters to the question, specifically in the
areas of induction, reasoning with uncertain beliefs, and knowledge and belief.
A very clear account of the different approaches, together with some penetrat-
ing obscrvations as to their merits and deficiencies, is given by Ng and
Abramson [11]. They highlight the problem that the input variables must be
assumed to be independent for most methods to work. The new feature of our
method is that the independence of the variables is tested, and dependent
variables combined or removed from the system.

Although our method is quite general, we do not claim that it is of universal
applicability. Even if we confine ourselves to probability-based approaches,
there are many arcas, for example investment decisions, where it may not be
possible to introduce objective probabilities. Expert systems in these areas
would have to use subjective, or perhaps intersubjective, probabilitics. There
docs, however, secem to be a wide range of cases to which it could be applied.

2. The QUALQUANT methodology

In this section, we will outline a methodology for constructing expert systems
which we shall call the QUALQUANT methodology. This is short for qual-
itative orientation leading to quantitative improvement. It is based on the
following three principles:

(1) As far as possible only qualitative suggestions should be sought from the
domain expert, and it should be left to the computer scientist to give this
a more precise quantitative form.

(2) Objective probabilities should be used wherever possible.

(3) All assumptions should be tested and modified if they fail the test
(testing principle).

The testing principle is based on Popper’s theory of scientific method [14].
The second and third principles are fundamental to the so-called classical
approach to statistics of Fisher and Neyman-Pearson. This approach is in fact
Popperian or falsificationist. Its application to expert systems will be contrasted
with the subjective Bayesianism which is at present dominant among those who
use the probability approach to cxpert systems.

In building an expert system we start with a skilled task performed by some
domain expert. We find out the rules which the domain expert uses, and then
attempt to incorporate these into a program in such a way that the task can be
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performed by a computer. A key difficulty in this procedure is that of obtaining
the requisite rules from the domain expert. The domain expert may not be
fully aware of the rules which he or she is actually using in practice. The expert
may not be able to formulate very precisely even those rules which he or she
can remember. Other rules may be temporarily forgotten, while the expert
may be using unconsciously some rules of which he or she is not, and never has
been, consciously aware.' This last possibility is well-illustrated by what may be
an apocryphal story told by Michie. Since the story is amusing and illustrates a
most important methodological point, it is worth quoting what Michie says in
full:

Unfortunately, human practitioners tend to describe their own rules
of operation in terms which do not subsequently stand the test of
practice. The story is told of a large cheese factory whose Camem-
berts were a by-word. Crucial to their renown was the company’s
procedure for quality control, by which every hundredth cheese was
sampled to ensurc that the production process was still on the
narrow path separating the marginally unripe from the marginally
over-ripe. Success rested on the uncanny powers developed by one
very old man, whose procedure was to thrust his index finger into
the cheese, closc his eyes, and utter an opinion.

If only because of the cxpert's age and frailty, automation
seemed to be required, and an ambitious R&D project was laun-
ched. After much escalation of cost and elaboration of method.
which included lowering into the cheese various steel probes wired
to strain gauges and other sensors, no progress had been registered.
Substantial inducements were offered to the sage for a precise
account of how he did the trick. He could offer little, beyond the
advice: “It’s got to feel right!” In the end it turned out that fecl had
nothing to do with it. After breaking the crust with his finger, the
expert was interpreting subliminal signals from his sense of smell.
(10, p. 217]

The key thing to note here is that the cxpert thought he was using one
characteristic, feel, while in fact he was using another, smell. As long as a rule
in terms of the feel of the cheese was being sought. no progress could be made
despite all the complexity of the investigation. As soon as the qualitative
orientation was changed from fcel to smell, data collection and analysis would.
no doubt, have revealed the exact quantitative composition of the smell
corresponding to the perfectly ripe Camembert. Kuhn has quite correctly, in

! Jeff Paris (personal communication) pointed out that the notion of an expert using a rule
unconsciously is somewhat questionable. It may be that the expert does not use a rule at all. This 1s
a fair point, but it may nonctheless be possible to simulate what the expert docs using a rule.
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our opinion, emphasized the need for a qualitative underpinning of the
quantitative in his 1961 paper, where he writes [S, p. 180]: . . . large amounts
of qualitative work have usually been prerequisite to fruitful quantification in
the physical sciences.”

Later in this paper, we will describe how this QUALQUANT methodology
was used to construct a rule-based expert system for colon endoscopy. At this
stage, however, it might be helpful to introduce one simple rule of the system
by way of illustration. An endoscope is a flexible tube with viewing capability
(fibreoptic or video). In the application under consideration it is inserted into
the patient’s colon, and onc problem is then to steer the endoscope along the
colon so that the doctor can observe this organ from the inside. In moving the
endoscope, it is very important to direct its tip towards the opening of the next
section of the colon—called the lumen. If this is not done correctly it can be
very painful and dangerous to the patient, and could even cause perforation of
the colon wall. One problem then is to pick out from the picture being
transmitted by the endoscope’s camera the position of the lumen. A domain
expert will use his or her judgment, based on experience, to decide where the
lumen is located. When our domain expert was consulted about how this was
done, his first protocol was that the lumen is a “large, uniform, dark region”.
This is clearly a qualitative rule, and it was turned into a precise quantitative
form by finding suitable mathematical equivalents for “‘large” and “‘uniformly
dark”. Some of the parameters used here were estimated from data in the form
of video films of colonoscopy sessions on many different patients. At a later
stage, probabilities were incorporated into the mathematics using a method
which will be described in the next section.

This simple example shows how the qualitative rules provided by the domain
expert can be given a more precise mathematical and quantitative formulation
by the computer scientist constructing the expert system. Once these quantita-
tive formulations have been devised, however, the next important step is to
test them out against the data of cases which have been handled by a human
expert, and whose outcome is known. There are three possible outcomes of
such testing which are illustrated in Fig. 1. Outcome 1 is that a quantitative
formulation is discovered which performs as well as, if not better than, a
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Expert Engineer
3
2
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Rules Rules test m

Fig. 1. The QUALQUANT methodology.
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human expert. This provides something which can be used in practice, though
the possibility of further improvement should not be overlooked. Outcome 2 is
that no quantitative formulation works as well as the human expert, but there
is some indication that improvements in the quantitative formulation will be
successful. In this case the problem returns to the computer scientist who has
to try to find a better mathematical model. Outcome 3 is that every existing
mathematical model seems to be hopeless. This is illustrated by Michie’s
Camembert example at the stage when the qualitative orientation is still
towards feel rather than smell. In this case an attempt must be made to elicit
new suggestions from the domain expert, always remembering that the domain
expert may be using rules of which he or she is not consciously aware.

3. Use of objective probabilities and the testing principle

Those who use the probability approach to cxpert systems almost always
adopt the subjective interprctation of probability. We, however, want to
advocate the use of objective probabilities when this is possible, while fully
acknowledging that it is not always possible. It would be as well therefore to
begin by explaining very bricfly the difference between objective and subjec-
tive probability.

The subjective approach to probability was introduced by Ramsey [16] in
England in 1926 and De Finetti [1] in Italy in 1937. Probability is regarded as
the degree of belief of a particular individual, Mr Average say. We measure Mr
Average's degree of belief in a particular proposition—say that it will rain in
London tomorrow—by forcing him to bet on this proposition under specified
conditions, and. in particular, to choose a betting quotient. It can be shown
that Mr Average has to choose his betting quotients so that they satisfy the
axioms of probability or else a cunning opponent will be able to make a Dutch
book against him, i.e. choose the stakes so that Mr Average loses whatever
happens. This result, known as the Dutch book argument, or Ramsey-De
Finetti theorem, provides the foundation for probability theory on the subjec-
tive approach. The subjective approach can be extended to include intersubjec-
tive probabilities which represent the degree of belief not of an individual but
of a social group which has reached a consensus.

The objective approach to probability, by contrast, denies that probability
has anything to do with human beliefs, and regards probabilities as objective
features of the external world. Objective probabilities manifest themselves in
the observed statistical frequencies with which particular events occur. Take,
for example, the probability of a specific biased coin giving heads. This, on the
objective approach, has nothing to do with any human beliefs or any human
betting. the probability is an objective property of the coin and the way in
which it is tossed. The probability is thus analogous to the mass of the coin, to
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its melting point or its electrical resistance, or to any other of its objective
propertics. The objective probability of getting heads manifests itself in the
frequency with which heads appears in a long sequence of tosses of the coin. In
effect the probability is manifested in an experimental outcome whose value is
in no way determined by the beliefs of the experimenters.

In recent years the objective approach to probability has been mainly
advocated by members of the Popperian school (Popper [13], Gillies [3], and
Popper’s “Part 1I: The Propensity Interpretation of Probability” [15, pp.
281-401]). Probability assignments are, on this approach, regarded as conjec-
turcs which need to be validated by statistical tests.

Let us now see how these distinctions apply in the field of artificial
intelligence, and. more specifically, of expert systems. Lindley is one of the
most distinguished advocates of the subjective approach to probability, and
recently he has argued strongly for the use of subjective probability to
represent uncertainty in information technology, while strongly criticizing
alternative approaches. such as fuzzy logic [7, 8]. Ng and Abramson [11] cite
Lindley [8]. and advocate a similar position—though rather more cautiously.
They say:

In expcrt systems, a knowledge base stores human knowledge.
Thus. in representing an expert’s knowledge with probability
theory, the only appropriate interpretation of probability is subjec-
tive belief. [11, p. 31]

Let us take a medical example to illustrate this. Suppose we ask a doctor (Dr
Camphor), who is expert in the field, whether a patient with a particular group
of symptoms is likely to have a specified disease. Dr Camphor assigns a
probability ¢ to the patient having the disease given those symptoms. Is it not
reasonable to regard ¢ as cxpressing Dr Camphor’s degree of belief that the
patient has the disease given the symptoms? This is certainly onc way to
proceed, but another approach is possible.

Consider the set of patients of the appropriate type who have the symptoms
in question. and suppose further that the frequency of such patients who have
the disease is p. We can then suppose that there is an objective probability p of
having the discase given the symptoms. Dr Camphor’s stated value ¢ can then
be regarded simply as his estimate of the objective probability p. Now if Dr
Camphor is a noted expert in the field, we should obviously take his estimate
seriously, but it should not be regarded as sacrosanct. After all, even the most
notable experts do often make mistakes. The important thing, in accordance
with the Popperian ideas developed in the previous section, is to test out the
estimatc to see if it accords with the objective facts, and to replace it if it does
not.

So far we have emphasized the differences between our approach based on
objective probabilities and the subjective probability approach. However there
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are many points in common as well. To begin with both approaches base
themselves on the standard mathematical theory of probability, and this
contrasts with other ways of handling uncertainty such as fuzzy logic (Zadeh
[20]) or Dempster—Shafer theory [17]. There is moreover another point in
common which concerns the use of Bayes’ theorem. Ng and Abramson write
[11, p. 31]: “The term ‘Bayesian’ is often used as a synonym for subjective
probability.” 1t is, however, perfectly possible to use Bayes’ theorem in cases
where all the probabilities involved are objective. This is indeed the approach
which we adopt, and it can be illustrated by pursuing a little further our
example of medical diagnosis.

Let D be a disease, and (S, S,, ..., S} be a group of symptoms. We shall
call such a group a syndrome. Now we want to calculate the probability of a
patient having the disease given that he or she has the syndrome of symptons,
i.e. we want to calculate P(D|S, & S, & ---& S,). Applying Bayes’ theorem,
we get

P(DIS, & S, & - &S,)

CP(S, &S, & & S,|D)P(D)
a P(S, &S, & - &S,)

(1)

This in effect decomposes the probability we wish to calculate on the left-hand
side into three probabilities on the right-hand side. The question now arises as
to whether we can regard these three probabilities as objective probabilities.
and. if so, whether we can use data to estimate their value. Let us consider the
three probabilities in turn.

(1) P(D). This is the probability that an arbitrary member of the underlying
population has the diseasc. This is certainly an objective probability
which manifests itself in the frequency of the discase in the population.
Since the value of this statistical frequency is known for most major
discases, we should have an estimate of the objective probability based
on data without recourse to expert opinion.

(2) P(S, & S, &---& S,|D). This is the probability that an arbitrary pa-
tient who has the disease has the syndrome of symptoms. Once again
this is a fully objective probability. We are unlikely to have data to
estimate its value initially, and may therefore have to rely at first on an
expert’s estimate. However it is in fact particularly easy to collect data to
estimate this probability. The population is those with the disease. Most
of them will seck treatment from their family doctor or will be treated in
hospital. Of course the patients who report for treatment are a self-
selected rather than random sample, and some corrections may be
needed here, especially for diseases such as food allergies which would
not necessarily be recognized by the patient. Thus, as soon as those
concerned in the treatment are alerted to the need for checking whether
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such patients have the syndrome in question, they can easily do so. It is
interesting to note, however, that without the background of mathemati-
cal probability, no one would think of ascertaining this particular
statistic, despite the ease with which its value can be found.

(3) P(S, &S, &---& S,). This is the probability that an arbitrary member
of the underlying population has the syndrome of symptoms whether or
not he or she has the disease. Once again this is certainly an objective
probability, but, in contrast to the two previous cases, it might well be
difficult to estimate this probability from data. Of course there is no
difficulty in principle. We need only take a random sample of the
population, and check how many have the syndrome. The trouble is that
the probability concerned is likely to be small—indeed, as we shall see,
we want it to be small—but this means that a very large sample would be
needed to get an accurate estimate of the probability. Such a sample
might not be feasible on the grounds of expense, etc. This problem could
be overcome if it were possible to assume that the various symptoms are
independent, for then we have:

P(S; & 8§, &+ & S,) = P(S)P(S,)- - P(S,) - )

Now cach of the P(S,) on the right-hand side of this equation is the
probability of the particular symptom S, occurring in the underlying
population, and a small sample would in general suffice to obtain an
estimate of such a probability. This, of course, is only one simple
example of the way in which independence assumptions (or more
generally conditional independence assumptions) can simplify calcula-
tions and make them more tractable. We will give another example in
due course.

The fact that objective probabilities can be used in Bayes’ theorem by no
means shows that our QUALQUANT methodology is identical to the subjec-
tive Bayesian approach. In the rest of this section we will compare the two
approaches, and in particular argue that the use of objective probabilities helps
to overcome some of the difficulties which Ng and Abramson note in the
subjective Bayesian approach. Subjective Bayesians have to elicit subjective
probabilities from the domain experts, and, as Ng and Abramson point out,
this can be a very problematic process:

Finding an expert able to accurately quantify personal, subjective,
and qualitative information, however, is no mean feat. It has been
observed that humans are easily biased, and thus the quality of the
knowledge extracted from experts depends greatly on the method
used for assessment. Nevertheless, expert system researchers have
expended surprisingly minimal effort on studying and deriving
appropriate assessment techniques. [11, p. 44]
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The QUALQUANT methodology cuts through this problem by trying,
wherever possible, to extract only qualitative information from the domain
expert, i.e. only the kind of information which the domain expert will find it
relatively easy to provide, while leaving the task of turning this into a
quantitative mathematical model firmly in the hands of the computer scientist.
As far as probabilities are concerned, the attempt is made to estimate these
from data wherever possible. If an estimate provided by an expert has to be
used, this is regarded as a temporary expedient to be replaced by an estimate
from data as soon as this can be obtained. Use was made of Bayes’ theorem in
our expert system for colonoscopy similar to that just described in the medical
diagnosis example, and in this case we were able to estimate all the prob-
abilities involved from the data without asking the domain expert to give any
quantitative subjective probabilities. We believe that this would be the case in
many practical applications.

Returning to our example of medical diagnosis, however, we can observe
that although we do not want to elicit from experts quantitative probabilities,
which, in general, they would find it difficult to provide, we do want to elicit
from them a great deal of very important qualitative information, which, in
general, they would find it easy to provide. Let us next examine briefly the
nature of this information. Above all the expert has to describe a syndrome (S
say) of symptoms appropriate to the disease in question. Our earlier use of
Bayes’ theorem shows the various criteria which S must satisfy. If S is to be a
good indicator of the disease, the P(D|S) must be high, but, in general, P(D)
will be low, and so, by Bayes’ theorem, we require that the ratio P(S | D)/P(S)
should be high. This means that P(S| D) should be large, i.e. there shouid be a
high probability of someone who has the disease exhibiting the syndrome of
symptoms, while P(S) should be low, i.e. there should be a low probability of
an arbitrary member of the underlying population having that syndrome of
symptoms. The computer scientist must obviously consult the domain expert to
find a group of symptoms having these characteristics.

This observation helps to overcome another difficulty which Ng and Abram-
son note in the probability approach. They write:

The main difficulty in implementing subjective probability theory is
the huge number of probabilities that must be obtained to construct
a functioning knowledge base. If, for example, some medical
diagnosis domain has 100 diseases and 700 relevant, observable
symptoms, then at least 70,100 probability values (70,000 condition-
al probabilities and 100 prior probabilities) must be obtained . . . .
(11, p. 34]

This would be true if we have to provide the conditional probability of any
disease given any symptom. Indeed if we had to calculate the conditional
probability of any disease given any finite group of symptoms, the probabilities
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required would be still more numerous. If, however, guided by the domain
expert, we confine our attention to just a few rclevant syndromes, then we
should be able to cut down drastically the number of probabilities which need
to be estimated. This example illustrates an important general principle which
can be stated as follows:

Qualitative information obtained from the domain expert should be
used wherever possible to simplify the corresponding mathematical
model.

We come lastly to the difficulty about independence. As we have seen it is
often necessary, when using a probability-based approach to artificial in-
telligence, to make some assumptions about independence in order to render
the problem tractable. Unfortunately these assumptions about independence
may not be valid. What can be done about this situation?

The first move in the QUALQUANT methodology is familiar enough. We
seek advice from the domain expert as to which characteristics might be
independent. It is, however, the second move which differentiates our ap-
proach from the subjective one. This second move employs the Popperian
principle that it is possible to make any assumption we like provided the
assumption in question is tested. In this case we begin by assuming that our
group of characteristics is independent, but we then test out this assumption
against the data. One way of testing for independence is by calculating the
correlation of pairs of the characteristics. Although a low correlation does not
necessarily imply independence, it provides cvidence that independence is a
reasonable assumption to make; and, on the other hand, a high correlation
indicates that the characteristics are nor independent and our assumptions are
invalid. If we find a high correlation between a pair of characteristics, we must
modify our probabilistic assumptions, and there are at least three alternatives:

(a) Eliminate one of the characteristics on the grounds that we can get
almost as much information from one characteristic as from the pair.

(b) Find a parameter that combines both characteristics.

(c) Consult the expert(s) and modify the qualitative structure of the rule
base.

A reasonable strategy, following our general philosophy of incremental refine-
ment of the rule base shown in Fig. 1, would be to try (a) or (b) and test the
system; going on to (c) only if the performance is not satisfactory.

The application of this strategy in the case of our expert system for colon
endoscopy produced a remarkable result. Our test for independence using the
calculation of correlation coefficients did show that one pair of characteristics
were correlated. Applying (a) above, we eliminated one of the characteristics,
and found to our surprise that the performance of the system actually
improved. At first sight this may seem paradoxical, because, if we eliminate
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one characteristic, we are using less data to make our decision. However it
should be remembered that this extra data is only used via a false assumption
of independence. It is thus better to neglect this data altogether than to add it
in a way which is mathematically incorrect. This interesting result provides a
strong endorsement for the principles of the QUALQUANT methodology,
and particularly for the idea that all assumptions should be tested against data.
In favourable circumstances such tests can lead to a modified system which is
simplified as well as improved.

The QUALQUANT methodology involves two fundamental principles (ob-
jective probabilitics, and testing) of the classical statistics of Fisher and
Neyman—Pearson. The main controversy in the foundations of statistics over
the last few decades has been between classical statistics and subjective
Bayesianism, so that the above discussion is really just a special case of this
debate. The subjective Bayesians constitute a significant minority, but most
statisticians prefer the classical approach. This is probably for two inter-
connected reasons. First of all people always have more confidence in a model
or procedure which has been thoroughly tested. Secondly most statisticians find
the classical approach simpler in practice. This may well be connected with
testing. since testing and the elimination of false assumptions can often simplity
the model—as in the present case. At the moment most of those who adopt the
probability approach to expert systems are subjective Bayesians. Our sugges-
tion is that the use of objective probabilities and the principle of testing which
have proved so effective in other areas of statistics may also be useful in expert
systcms—at least in some cases.

These points can be clarified by a brief comparison between our approach,
and a good recent example of work in the paradigm of subjective Bayesianism
[18]. Spiegelhalter and Lauritzen [18] point out that simplifying assumptions
are necessary to make their procedure tractable, and go on to say: “In this
paper we therefore explore in some detail the simplifying assumptions . .. ."
[18. p. 582). As usual these simplifying assumptions turn out to be independ-
ence assumptions. The first is that of global independence, and the second of
local independence. They summarize their position as follows:

An assumption of global independence of 6,s allows global dissemi-
nation to be carried out locally. . .. Assumed local independence
allows each conditional probability distribution to be individually
updated. Each of these a priori assumptions only remains valid
under certain sampling schemes. [18, p. 587]

The point we would make is this. Although Spiegelhalter and Lauritzen state
that the a priori assumptions of independence are not always valid, they do not
propose any tests for seeing whether these assumptions are valid, or even
suggest that any such tests be performed. This of course is quite in accordance
with the subjective Bayesian paradigm in which they are working. In the
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subjective Bayesian approach, prior probabilities are interpreted as initial
degrees of belief. These are not tested, but are changed into posterior
probabilities (i.e. degrees of belief revised in the light of evidence) by the
process of Bayesian conditionalization. This is in sharp contrast to our own
approach in which all assumptions of independence are conjectural, and have
to be tested out against data to see if they really hold.

Spiegelhalter and Lauritzen remark that they: *“ ... have not addressed the
crucial area of criticism of the qualitative structure of the model...” [18, p.
601]. This is indeed a problem for the subjective Bayesian approach, since the
process of Bayesian conditionalization does not in general alter the qualitative
structure of the model, unless alternatives are built in at the beginning (a
priori). To consider a whole range of alternatives at the beginning, however, is
scarcely feasible, and may indeed be unnecessary if the initial assumption
proves to be correct. This difficulty does not arise within the QUALQUANT
methodology, since, as we stressed in Section 2, one response to the failure of
a quantitative model to pass a test is to alter the qualitative structure of the
model—perhaps through discussions with the domain expert.

4. Application of the QUALQUANT methodology

We will illustrate the application of our methodology via an expert system
for colon endoscopy. This provides a good test case because of the high degree
of uncertainty in the knowledge and data, and the availability of real data from
many different cases.

Endoscopy is one of the tools available for diagnosis and treatment of
gastrointestinal diseases. It allows a physician to obtain direct colour informa-
tion of the human digestive system. The endoscope is a flexible tube with
viewing capability (fiberoptic or video). It consists of a flexible shaft which has
a manoeuvrable tip. The orientation of the tip can be controlled by pull wires
that bend the tip in two orthogonal directions (left/right, up/down). It is
connected to a cold light source for illumination of the internal organs and has
an optical system for viewing directly through an eye piece or on a TV
monitor. The instrument has more channels for transmitting air to distend the
organ, for a water jet to clean the lens and for sucking air or fluid. The
consultant controls the instrument by steering the tip with two mechanical
wheels, and by pushing or pulling the shaft. The shaft is relatively torque-stable
so that he can also apply rotatory movements to the tip. Also, he should
control the air supply (inflate or aspirate) for good vision but without excessive
air pressure, use the water jet for cleaning the lens when it is dirty, aspirate
excess fluid, and realize the diagnostic or therapeutic objective of each
particular case. The doctor inserts the instrument estimating the position of the
colon centre (lumen) using several visual clues such as the darkest region, the
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colon muscular curves, the longitudinal muscle, and others. If the tip is not
controlled correctly it can be very painful and dangerous to the patient, and
could even cause perforations of the colon wall. This is further complicated by
the presence of many difficult situations such as the contraction and movement
of the colon, fluid and bubbles that obstruct the view, pockets (diverticula) that
can be confused with the lumen and the paradoxical behaviour produced by the
endoscope looping inside the colon. This requires a high degree of skill and
experience that only an “expert” endoscopist will have.

A computer system is being developed to aid a physician in colonoscopy.
The primary objective of the system is to help the doctor with the navigation of
the endoscope inside the colon by controlling the orientation of the tip via the
right/left and up/down controls. As well as a navigation system, it will also
serve as an advisory system for learning endoscopists suggesting correct
actions. It seems impossible to construct a general and complete model of the
human colon, due to its complexity and wide range of variations in different
persons. This difficulty points towards the use of expert system techniques to
solve the endoscope navigation problem. The main sources of information for
endoscope navigation are knowledge about the human colon (for interpreta-
tion) and expertise from the expert endoscopist (for planning and control).

The information provided by the visual input and the knowledge compiled
from the expert are both incomplete and uncertain. Features obtained from the
low-intermediate vision levels are uncertain due to several factors:

e There is not an exact model of the illumination provided by the endoscope
inside the colon and we are restricted to a single camera.

® There is noise due to specularities and uneven texture.

e Image acquisition (camera and A/D convertion) distorts the images.

® The edge detection and segmentation techniques used at the lower levels
are imprecise due to loss of information caused by poorly selected
thresholds.

The expert knowledge is also heuristic, with “‘fuzzy” concepts (e.g. “large
dark region”) and imprecise rules (e.g. “there is evidence of possible di-
verticula”).

The first step for endoscope navigation and advice is to recognize the
important features in the images. These are the ones that the expert consultant
uses to guide the endoscope inside the human colon. Two main characteristic
objects have been found to be very useful, one due to the type of illumination
of the endoscope and the second one to the anatomy of the colon. The darkest
region generally corresponds to the lumen because there is a single light source
close to the camera. The colon has a series of transverse folds (rings) which
appear as circular or triangular occluding contours in the image and they also
show the correct way to go. Khan and Gillies [4] have developed new methods
for extraction of the dark region and the occluding contours (rings). For the
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dark region extraction they use a Quadtree representation in which the largest
quadrant with a certain intensity level and variance is used as a seed region that
is extended to “cover” the lumen area.

In the first stage of our advisory system, we are using the data from the dark
region detection as main input to the expert system. The features we currently
obtain from this process are:

® rcgion size,

® mean intensity level,

® intensity variance in thc region,
® location in the image.

This information from the present and past images will be used as a testbed for
our knowledge base. Using the experts rules it will decide if the dark region
proposed by the low-level vision is the lumen. If it is not (with certain
confidence) or if no dark region is detected, it will try to find the position of the
lumen by inference from the previous images. From its interpretation of the
image it will use the control rules to give advice to the doctor.

A schematic of the system architecture is shown in Fig. 2. It is a modular
system with two main components:

(a) Feature extraction, which includes the low- and intermediate-level vision
modules [4] that obtain the main features from the image (regions and
contours) which are integrated in the symbolic image. The objects in the
symbolic images constitute the input to the expert system.

Knowledge-based system

[ ol e i ]
1
Feature ' Guidance
Extraction ! Interpretation Controi
1)
/—\ Advise
Digitized Symbolic Objects Auxiliary
Image Imag:e Controls
. T
] ]
1 \ ]
| ‘,-\ ]
1 -7, _-1 Knowledge b~ Voo
Py - Base m [N
* ]
: RIS ,’/\"'/ :
_______ e aTTTTTTTITI T e L
knowledge “~ mm—— L knowledge
acquisition ~ v ’ refinement

Fig. 2. System architecture.



Objective probabilities in expert systems 201

(b) The knowledge-based system, which contains the expert system for
advice and control. It is subdivided into:

e interpretation: which labels the object in the symbolic image;

e control: which is based on the information from the interpretation and
the KB, and suggests actions for endoscope guidance, advice on the
image and actions for the auxiliary controls (inflation/water wash);

® knowlcdge base (KB): initially this contains the colonoscopy rules
obtained from the expert. This is refined with data from the endo-
scopy images and aid from the expert.

The interpretation module has been implemented as a probabilistic network,
while the control module is a standard logical inference engine. In the first
stage, we have only dark region information from the feature extraction
processes and have implemented the lumen recognition part of the KB. The
development of the system has been based on incremental refinement. It
consisted of three phases, namely:

® Qualitative knowledge acquisition. Extraction of the heuristics from expert
colonoscopists and their implementation in first-order logic.

® [Lstimation of probability distributions. Statistical analysis of colon images
and development of the probabilistic network.

o Vulidation of independence assumptions. Linear regression analysis of the
variables and modification of the KB structure.

We start by getting the qualitative knowledge for endoscope navigation from
an expert colonoscopist. We are mainly interested in the visual information he
uses to guide the endoscope inside the colon. Then we transform this knowl-
edge to probabilistic rules using data from videotapes of endoscopy sessions.

The colonoscopy knowledge-base (KB) consists of heuristics represented as
IF-THEN rules mainly because they are closer to the endoscopist’s con-
ceptualization. Currently we have extracted about sixty rules. These can be
classificd in two types:

® [nterpretation rules: these relate visual features to objects which are
relevant to the physician.

e Control rules: the advice rules indicate the correct action to follow given
an interpretation of the image.

Some examples of typical rules are shown in Table 1.

These sets of rules constitute our starting qualitative KB. A first prototype
was implemented by transforming the rules into Prolog Horn clauses. This was
tested with colon images but the performance was not satisfactory (Sucar and
Gillies [19]). The main problem was that the knowledge was codified as logic
rules and did not take into account the uncertain nature of the problem. So as
a next stage we incorporated the handling of uncertainty by using objective
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Table 1
Examples of colonoscopy rules.
Rules Interpretation Control
“normal” IF: large, uniform, and dark IF: lumen
region THEN: advance to centre of
THEN: lumen lumen
“special” IF: brown or yellow region IF: fluid and tip below fluid
with straight intertace level
THEN: fluid in colon THEN: aspirate
“special” IF: bright region IF: diverticula
surrounding dark region THEN: pull-back

THEN: diverticula

probabilities. For this, the diagnostic part of the KB was transformed into a
probabilistic network. This has some features in common with the belief
networks considered by Pearl [12], but there are some differences as we will
point out below. A part of the network, i.e. for lumen and diverticula
recognition, is shown in Fig. 3. It basically represents three of the expert’s
original qualitative rules, namely:

(1) large, uniform dark region-> lumen;
(2) several concentric rings— lumen;
(3) small dark region— diverticula.

The circles represent the objects and features, and the arrows the dependen-
cies. Associated with each arrow there is a probability distribution for the
conditional probability of the object at the end given the object at the start. For
example the arrow from Lumen (L) to Large Dark Region (LDR) represents
the probability of observing a large dark region given a lumen in the image
(P(LDR|L)).

Fig. 3. A section of the probabilistic network for recognition.
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We have structured the KB as a set of probabilistic trees (multitree or forest)
so there is one tree that encapsulates the rules for recognition for each object.
Each recognition tree consists of a single root that represents the object of
interest, intermediate objects/features, and several leaves that constitute the
measured parameters. This structure allows us to evaluate easily the posterior
probability of each object given its prior probabilities and the conditional
probabilities represented by each arrow in the tree. For this we initially assume
that the sons (the objects at the end of the arrows) are conditionally in-
dependent with respect to their parent. Afterwards we will test this assumption.

Figure 4 shows the recognition tree for lumen restricted to dark region
features, as well as the required probability distributions. Note that we only
require the prior probability of the root. The measured inputs are S (the region
size), M (the region’s mean intensity), and V (the region’s variance). The
posterior probability is obtained by applying Bayes’ theorem:

P(L)P(S,M,V|L)

S, M, V)= 3
P(LIS.MV) = ==y (3)
Putting this in terms of the intermediate object (LDR) we get:
P(LIS. M. V)
_ P(L)[P(S.M.V|L,LDR)P(LDR|L) + P(S.M.V|L, 7 LDR)P(LDR| L)
B P(S. M. V) i
(4)

If we assume that S, M, and V are mutually independent given LDR as well as
independent of L, we obtain:

P(L|S, M.V)

P(L)[Z P(S|LDR,)P(M|LDR,)P(V| LDR,)P(LDR, | L)]

P(S, M, V) :
(5)
P(L)
P(LDRIL),
P(LDR}-L)
P(S|LDR), P(VILDRY),
P(S|-LDR P(V|-LDR)

P(M|LDR),
P(M{-LDR)

Fig. 4. Lumen recognition and related probabilities.
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Similarly:
P(AL{S, M. V)
P(ﬁL)[Z P(S|LDR,)P(M|LDR,)P(V | LDRi)P(LDRi]ﬁL)]

P(S. M., V) (6)

Given that (5) and (6) must sum to one, we can eliminate the term P(S, M, V)
and finally obtain:

P(L|S.M,V)

P(L){Z P(S|LDR,)P(M|LDR,)P(V | LDR,)P(LDR,] L)}

¢ ™)
Using (7) we can obtain the posterior probability of the lumen (root) given
only its prior probability and the conditional probabilities indicated in Fig. 4,
given that our independence assumptions arc correct.

This procedure could be extended to a tree of any size and it allows us to
propagate the probabilities directly from the leaves to the root. To maintain
this computational simplicity we treat separately each object of interest and
construct a similar tree for each, so at the end the KB is represented as a
collection of such trees or a multitree.

Our method differs in two important aspects from the other probabilistic
networks {6, 12, 18]:

(1) The prior and conditional probabilities required for evaluation are
objective, that is obtained statistically from test data.

(2) Although we also assume conditional independence according to the
network structure, we continuously test for it by using linear regression
techniques and if there are dependencies the network structure is
modified accordingly.

5. Experimental results

In one study we analyzed a random sample of about 300 colon images and
obtained the required probability distributions from the data. We measured:

(1) the number of times a lumen appeared in the image;

(2) the number of times a lumen appeared but was not identified as a large
dark region by the low-level vision system;

(3) the number of times a lumen appeared and was identified as a large dark
region;
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(4) the number of times the low-level vision system identified a large dark
region which was not a lumen.

For cach large dark region identified we also measured the size, mean and
variance.

From these statistics we can easily obtain an objective estimate of the
probability distributions required for lumen recognition (Fig. 4). In our
example, the variables we are using have discrete values which are further
quantised into small ranges and probabilities are computed for each of these.
For mean and variance we divide the range of interest into m such ranges
setting m to approximately V7, where n is the number of samples. Unlike the
continuous case we do not make any assumptions about the initial distribution.

The final stage in our methodology is to validate the structure of our
probabilistic network, that is basically checking if the independence assump-
tions we made are correct. For this we calculate the pair-wise correlation for all
the variables. applying the Pearson’s product moment (r) and Kendall’s tau (7)
correlation coefficients which are defined by McPherson [9].

Both provide different measures of association between random variables.
Pearson’s correlation coefficient indicates if there is a linear relationship, and
Kendall’s correlation coefficient detects any increasing or decrcasing trend
curve present in the data. In the case of our example, we computed the
correlation between size, mean, and variance conditioned over large dark
region and lumen. We actually found a high correlation between mean and
variance, so we modify our KB accordingly.

After the second phase, the recognition part had basically the structure
shown in Fig. 4. The analysis of the colon images gave us a frequency cstimate
of the required probability distributions and enabled us to construct the first
prototype of the probabilistic network. We still had to test its structure and for
this we obtained the correlation between the features of the lumen which we
were assuming independent. Table 2 summarizes the main results of this
analysis.

There is a strong correlation between mean and variance which questions our
independence assumption between these two variables, the other values seem
relatively low so we will maintain that size is independent from the other two
parameters. As a first step we eliminated one of the correlated variables. This
resulted in two alternative trees for lumen recognition, one with only size and

Table 2

Correlation between lumen parameters.

Correlation size and size and mcan and
coefficients mean variance variance
Pearson’s r —0.146 0.264 0.482

Kendall's 7 —0.089 0.116 0.342
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Table 3
Performance results for different structures.

Number of samples correct (percentage)

Configuration Lumen —1Lumen Diagnosis Advice
All parameters 899% 54% 86% 89%
(size, mean, variance)

Eliminate variance 93% 79% 91% 92%
(size. mean)

Eliminate niean 97% 509% 92% 92%

(size, variance)

mean and the other with size and variance. We then tested the system’s
performance for lumen recognition with these three possible configurations. To
evaluate it we compared the results of the image interpretation and control to
the experts opinion in a random sample of cases. For this we used a different
sample of more than 130 colonoscopy images. These results are presented in
Table 3.

As will be seen there is an improvement in all cases when the variance is
eliminated, and this difference is highly significant in the case of —Lumen
recognition. The climination of the mean provides an improvement in lumen
recognition which is significant with a confidence interval of just above 95%. In
both alternative modifications, the image interpretation and suggestions to the
physician were equal to the expert’s opinion in a larger number of cases.
Additionally, the network size was reduced and consequently object recogni-
tion was faster, so at the same time we obtain a more reliable and efficient
system.

For a Bayesian approach to be practical, we usually need to assume
independence or at least conditional independence. But as the previous
example demonstrated, this should be done with caution. We should treat our
independence assumption as conjectural, in the same way that we consider the
subjective estimates of probabilities, and use real data to corroborate it or
change the structure of the network if the results are not satisfactory.

6. Conclusions

We can now briefly recapitulate the main points in favour of our approach
which involves the QUALQUANT methodology and the use of objective
probabilities.

First of all the approach is easy to use. Experts are only asked to provide a
qualitative orientation, and this they will in general find easy to do. In most
cases cxperts will not be required to provide any quantitative estimates, and,
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even if they have to do so, these estimates are treated as provisional and
subject to revision as more data is collected.

Secondly the approach has a sound theoretical foundation in Popper’s
falsificationist methodology, and the theory of objective probability. The views
of experts are treated with respect, but are still subjected to criticism and
experimental testing. This cannot but result in improvement. and in more
reliable systems.

Thirdly the approach makes some progress in solving what are recognised as
the principal problems in the use of probabilities to handle uncertainty in
expert systems. The first such problem concerns the large number of prob-
abilities which apparently need to be evaluated. Here our suggestion is to use
qualitative suggestions from a domain expert to limit consideration to relatively
small groups of characteristics which are known to be relevant to the question
in hand. The second main problem concerns the need to make assumptions of
independence (or conditional independence) to render the calculations tract-
able. The difficulty is that these independence assumptions may not be valid.
Here our suggestion is that independence assumptions can be made (perhaps in
consultation with the domain expert) provided they are regarded as conjec-
tures which must be tested out against the data. This testing methodology was
strongly vindicated in the example given, since the discovery of significant
correlation between two characteristics enabled us to simplify and improve the
system merely by eliminating one of the characteristics. Naturally it is not to be
expected that cvery case of dependence will be so easily dealt with, and in fact
we are at present working on the elaboration of further, more complicated,
strategies for handling cascs of strong correlation. Even as it stands at present,
however, we can recommend our approach to workers in the ficld of expert
systems.
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