LINE: a fluid performance engine
Version 0.7

Last modified: July 2, 2015

Contents
(1__Introductionl 1
2__New features| 2
BT Tation I ons 3
3.1 Using the LINE scripts| o o 3
[3.2 Using the LINE binaries| 3
[3.2.1 Common steps: LINE and the MCR]| 4
[3.2.2 Palladio Bench (with SPACE 4Cloud patch)|. 4
B.23 SPACE 4Cloudl oo o 4
A User’s Guidd 5
4.1 Starting LINE[.)
4.2 Using LINE from SPACE4Cloud|. 6
4.3 Using LINE from Palladio Bench| 7
4.4 Using LINE from aclient|. L. 7
5__Where to download and how to cite LINE 9
(A" LQN Extensions| 10
[A.1 Random environmentd 10
[A.2 Coxian distributionsl L o 14
(B LINE Developer’s Guide] 15
Bl LiNEclasses 15
IB.2 LINE scripts| o 18

1 Introduction

LINE is a tool for the performance analysis of software applications, which has been de-
signed to automatically build and solve performance models from a high-level description
of the application. This analysis is performed by analyzing a layered queueing network

LINE 2 NEW FEATURES

(LQN) model that is obtained from a model-to-model transformation from the high-level
application model. Starting from this release, LINE also offers support for models in the
Performance Model Interchange Format (PMIF) and in the Business Process Modeling
Notation (BPMN). This support is achieved by model-to-model transformations from
these models to the LINE performance model, which is a fluid queueing network model.
This document contains installation and usage instructions, and presents the new fea-
tures included in version 0.7. The appendix also includes a more detailed description
aimed at developers.
LINE has two main operation modes:

e The first operation mode is to directly use the MATLAB scripts. This allows for
solving LQN, PMIF, BPMN, or closed queueing network models. Example scripts
are provided on the examples folder that comes with the source code.

e The second operation mode is to use the LINE binaries. In this manner, LINE
can directly interact with the Palladio Bench and the SPACE4Cloud [1] tools.
The LINE binaries operate as a server that receives commands to solve application
performance models. This allows LINE to operate efficiently, as it only needs to
be started up once to solve as many models as needed. In addition, LINE also has
a parallel-execution option to further reduce the model solution times. We have
included detailed instructions on how to configure and run LINE together with
these tools.

2 New features

The main new features in version 0.7 are:

e LINE now supports the performance evaluation of BPMN models. LINE reads the
BPMN model in the standard BPMN XML format, which it analyzes by means
of a model-to-model transformation to LQN models. Examples of how to use this
feature are provided in the scripts example. BPMN_X.m included in the examples
folder.

e LINE now supports the performance evaluation of PMIF models. LINE reads the
PMIF model in the standard PMIF XML format, which it analyzes by means of
a model-to-model transformation to LQN models. Examples of how to use this
feature are provided in the scripts example_PMIF_X.m included in the examples

folder.

e LINE now offers the QD-AMVA solver, which has been developed to analyze queue-
ing networks with queue-dependent processing times [2]. This solver by setting a
new configuration variable, called solver, to the value QDAMVA. The default solver
is the existing fluid solver.

e The source code in LINE has been re-structured, facilitating its extensibility, par-
ticularly to consider different input models and solvers.

2 Last revision: July 2, 2015

LINE 3 INSTALLATION INSTRUCTIONS

The usage of LINE is described in Section

Bug fixes in this version:

e Bug fix in the computation of the mean response times in the mainSolver scripts.

Bug fix for networks with non-reference delay stations.

Bug fix in the treatment of the s vector (number of servers) as a column vector.
This is fixed in both the parser and the solver scripts.

Bug fix to return empty resSEFF and resSEFF_CDF objects when the SEFF is
not specified in a solver.

3 Installation Instructions

There are two main ways of using LINE: directly with the MATLAB scripts or via the
binaries to interact with other tools.

3.1 Using the LINE scripts

This is the quickest way to start using LINE if you have a MATLAB distribution and a
basic understanding of MATLAB code.

1. Download the source code of LINE version 0.7. This can be done by checking out
the code using an SVN client from the location
svn://svn.code.sf.net/p/line—solver/code/trunk/releases/v07

2. Next, start MATLAB and add the src folder, and its subfolders, to the path. This
is achieved by typing the command
addpath (genpath ('C:\path\to\line\src\"))

3. Go to the folder src\examples and open in MATLAB any of the examples pro-
vided. Make sure to set the MATLAB current folder to the folder with the ex-

amples. This allows MATLAB to locate the sample data files provided. Run the
script and see the results either on screen or in the output files generated.

3.2 Using the LINE binaries

There are three alternative ways of using the LINE binaries: from a client, or in conjunc-
tion with either SPACE4Cloud or Palladio Bench.

3 Last revision: July 2, 2015

LINE 3 INSTALLATION INSTRUCTIONS

3.2.1 Common steps: LINE and the MCR

The following steps are common to all three alternatives.

1. Download the LINE executable file from the Releases section on the LINE website
http://line-solver.sourceforge.net/\

2. As LINE has been built as a MATLAB application, it requires the installation of the
MATLAB Compiler Runtime (MCR), freely available at http://www.mathworks.
co.uk/products/compiler/mcr/.

(a) Windows: download and install the MATLAB Compiler Runtime (MCR),
version 2012b.

(b) Linux: download and install the MATLAB Compiler Runtime (MCR), version
2013a.

LINE is now ready to use from a client (see Section [4)).

3.2.2 Palladio Bench (with SPACE 4Cloud patch)

1. Export the location of LINE to the PATH system variable, so that Palladio can
find it.

2. Download Palladio Bench from http://www.palladio-simulator.com/tools/
download/. Download is free but registration is required.

3. Unzip the Palladio Bench distribution, and launch the Eclipse SDK therein.

4. In Eclipse, go to Help— Install new software. Click the Add button and as Location
specify the URL

ftp://ftp.modaclouds.eu/public/spaced4cloud/eclipse-update-site
5. Clear the Group items by category check box.

6. Select the PCM Solver Feature, click Next and complete the installation process,
which requires re-starting Eclipse.

LINE is now ready to use. Go to Run— Run Configurations, and select LINE in the Solver
tab.

3.2.3 SPACE 4Cloud

To install SPACE 4Cloud follow the instructions above, but in the last step Select both
the PCM Solver Feature and SPACE JClouds. Complete the installation, including
re-starting Eclipse. The SPACE 4Clouds icon should now appear in the tool bar.

LINE can be used in SPACE 4Clouds by selecting it from the Performance Engine
list in the Functionality Selection Panel.

4 Last revision: July 2, 2015

http://line-solver.sourceforge.net/
http://www.mathworks.co.uk/products/compiler/mcr/
http://www.mathworks.co.uk/products/compiler/mcr/
http://www.palladio-simulator.com/tools/download/
http://www.palladio-simulator.com/tools/download/
ftp://ftp.modaclouds.eu/public/space4cloud/eclipse-update-site

LINE 4 USER’S GUIDE

4 User’s Guide

The LINE binaries can be used in three different ways. Before describing each of them
we show how to start LINE and the configuration options available when executing LINE.

4.1 Starting LINE

Starting from version 0.5, LINE operates as a server, thus it must be first started, pro-
viding some configuration information. After this initialization step, LINE accepts com-
mands to solve models, to close the current connection, or to terminate it. After initial-
ization, LINE can solve as many models as needed by simply submitting the appropriate
commands.

To start LINE, execute the following command on the command line:

e In Windows:

LINE "LINE. properties”

e In Linux:

./run_LINE.sh /path/to/MCR/v81/ 'LINE.properties'

Here LINE.properties is a properties file that contains the configuration infor-
mation for LINE. Currently, LINE supports the following properties, grouped in three
sets:

1. Operation:

(a) port: port on which LINE will listen to commands from the client. Default
value: 5463.

(b) timeoutConnection: maximum time, in seconds, that LINE waits for new
commands before closing the current connection. Before closing a connection,
LINE completes any outstanding jobs. Default value: 30.

(c) verbose: enables verbose screen output if set to 1. Otherwise, limited screen
output is provided. Default value: 0.

(d) parallel: allows LINE to exploit the possible gains of solving models in
parallel. Three options are offered:
e SEQ for sequential execution (default);

e JOB for parallel execution using Matlab parallel engine for batch job
execution;

e PARFOR for parallel execution using the parfor mechanism in Matlab.

5 Last revision: July 2, 2015

LINE 4 USER’S GUIDE

(e) maxJobSize: maximum number of models to solve as a single parallel job.
As the JOB parallel execution option poses some overhead, it is in general a
good idea to put together a number of models and solve them as a single job.
In case the models are large or computationally heavy to solve, this number
should be small. In the case of simple models, this number can be large.
Default value: 12.

2. Solution methods:

(a) solver: solution method used to obtain the performance metrics. Two op-
tions are offered:

e FLUID: the fluid solver based on a system of ordinary differential equa-
tions [3]. Fast and accurate when the number of servers and users is large
(tens). Supports Coxian processing times and random environments.

e QDAMVA: method based on mean-value analysis that considers queue-
dependent processing times [2]. Fast and accurate for a broad range
of conditions, including small numbers of servers and users. Does not
support Coxian processing times nor random environments.

Default value: FLUID.

(b) maxIter: maximum number of iterations of the blending algorithm when
solving a model with random environments. Supported by the FLUID solver
option. Default value: 1000.

3. Results:

(a) respTimePerc: when set to WORKLOAD, it activates the computation of
response time percentiles, at the level of the workload. The default value
is NONE, which avoids this computation. Other options will be offered in
future releases.

(b) respTimePercMin: if the computation of response time percentiles is acti-
vated, this parameter determines the minimum percentile to compute. De-
fault: 0.05.

(c) respTimePercMax: if the computation of response time percentiles is acti-
vated, this parameter determines the maximum percentile to compute. De-
fault: 0.95.

(d) respTimePercStep: if the computation of response time percentiles is acti-
vated, this parameter allows the computation of many percentiles between the
minimum and maximum set above. Default value: 0.05. For instance, using
the default values, the percentiles computed are [0.05,0.10,0.15, ...,0.90,0.95].

4.2 Using LINE from SPACE4Cloud

When evaluating an application’s performance with SPACE4Cloud [I], the tool prompts
the user to choose a performance solver, offering LINE as one of the built-in options.

6 Last revision: July 2, 2015

LINE 4 USER’S GUIDE

The details on how to use SPACE4Cloud can be found in its documentation, available
at http://www.modaclouds.eu/software/space4cloud/.

4.3 Using LINE from Palladio Bench

Using LINE with the Palladio Bench tool is as simple as using any of the built-in solvers.
The following steps are provided for illustration.

1. Import or create a new project.
2. Go to Run Configurations, and select (double-click) PCM Solver.

3. Provide a name, and select the Allocation and Usage models from the application
model project.

4. In the Solver tab, select LINE from the drop-down list, indicate the output di-
rectory, and check (or clear) the werbose option to activate (deactivate) screen
debugging information.

5. Click Run. The results will be stored in an XML file on the output directory.

4.4 Using LINE from a client

After LINE has started, a confirmation is given with the screen message

LINE is listening on port 5463. The next step is to connect to LINE via the
defined port, which is illustrated in the example provided in the distribution[] Once the
connection is established, LINE will submit the message LINE READY, indicating that it
is ready to receive solution commands. A solution command is as follows

SOLVE path/to/LQNfile /LQN.xml

Here 1LoN. xm1 is the XML file holding a Layered Queueing Network (LQN) model. This
file can be generated, for instance, from Palladio Bench. A command could also be

SOLVE path/to/LQNfile /LQN.xml path/to/EXTfile /EXT.xml

Here, in addition to the LQN model, the EXT.xm1 file describes LQN extensions, which
currently cover two main objects: random environments and Coxian distributions. De-
tails and examples on how to specify these extensions are given in Appendix [A] Many
of these commands can be submitted, and LINE will process them sequentially or in
parallel, depending on the parallel property discussed above.

As LINE works as a server, a client establishes a connection with LINE before being
able to submit SOLVE commands. To close this connection, the client can submit the
CLOSE command. Also, the connection will be closed by LINE after a timeout, which

n the repository under http://svn.code.sf .net/p/line-solver/code/trunk/releases/v07/test.

7 Last revision: July 2, 2015

http://www.modaclouds.eu/software/space4cloud/

LINE 4 USER’S GUIDE

can be modified with the timeoutConnection property. Before closing the connection,
LINE will wait for all the SOLVE jobs to complete, ensuring that all models are solved.

Finally, the user can terminate LINE by submitting the command QUIT, which will
cause LINE to close the connection and terminate, after all the outstanding (running and
queueing) jobs have completed.

Example An example of a client connecting and submitting commands to LINE can
be found in the test folder of the 0.7 release, that can be downloaded from the Releases
page on http://line-solver.sourceforge.net/.

8 Last revision: July 2, 2015

http://line-solver.sourceforge.net/

LINE 5 WHERE TO DOWNLOAD AND HOW TO CITE LINE

5 Where to download and how to cite LINE

The LINE binaries and code released can be downloaded from
http://line-solver.sourceforge.net/

You can refer to LINE by citing the following paper:

J. F. Pérez and G. Casale, “Assessing SLA compliance from Palladio component mod-
els,” in Proceedings of the 2nd Workshop on Management of resources and services in
Cloud and Sky computing (MICAS), IEEE Press, 2013.

9 Last revision: July 2, 2015

http://line-solver.sourceforge.net/

LINE A LQN EXTENSIONS

A LQN Extensions

In this section we present an example of an XML file describing an LQN extensions.
There are two sets of elements: random environments and Coxian distributions. The
example XML and the associated XML schema can be found in the LINE repositoryﬂ

A.1 Random environments

To define a random environment (RE), the following elements are involved:
1. environment: defines an RE.

e Attributes

— numStages: number of stages in the RE.
— envID: identifier of this RE.

e Children:

— stage
2. stage: defines each of the stages in the RE.

e Attributes
— name: name of this stage.
e Children:

— transition
— stageTime

3. stageTime: defines the sojourn times in each stage, which can be exponential or
Coxian.
e Children (exclusive or):

— meanTime: mean sojourn time in this stage, if these times are exponen-
tially distributed.

— coxID: id of the Coxian distribution element (see next section) that de-
scribes the sojourn times.

4. transition: defines a transition between to stages in the RE.

o Attributes

— destName: name of the stage reached with this transition

— prob: probability that this transition occurs. The sum of all transition
probabilities in a stage must add up to one.

e Children:

*http://svn.code.sf.net/p/line-solver /code/trunk/doc/support /LQNextensions/

10 Last revision: July 2, 2015

LINE A LQN EXTENSIONS

— resetRule

5. resetRule: defines the reset rule applied when a transition occurs. This reset rule
determines how the service phases, in a Coxian distribution, evolve when a stage
transition occurs.

e Attributes

— ruleName: type of reset rule. Supported rules include noReset and full-
Reset.

The example shown in Figures [T and [2] defines an RE named environment and composed
of 3 stages. The sojourn time in the first stage, named SU, is described by a Coxian
distribution, with ID cozStagel. The XML element describing this distribution is in
Figure [2] and is described in detail below. After a visit to this stage, a transition to
either stage LC or HC occurs with probability 0.5, following the noReset rule. For the
stages LC and HC, the stageTime element is not described with a Coxian ID, but with
the mean time of an exponential distribution. In this case we simply set the mean sojourn
times in these phases to be 100 and 200, respectively. Other stages and transitions are
defined similarly.

After defining an RE, we can use it to modify the value of some parameter values as
a function of the RE stages. This is done by defining environmental parameters, which
involves the following elements.

1. envParameter: defines an environmental parameter.

o Attributes

— id: ID of the LQN processor associated to this environmental parameter.

— paramName: name of the parameter (in the processor identified above)
that is affected by the environment. Current supported options are:
speed-factor, and multiplicity.

— envID: identifier of the RE that affects this parameter.

e Children:

— envValue
2. envValue: defines the values taken by the parameter in each environmental stage.

o Attributes

— stage: stage of the RE to which this value is associated.

— factor: factor by which the value in the model is multiplied to obtain the
actual value of this parameter in this stage of the RE.

The example shown in Figure [1| defines an environmental parameter associated with the
VMContainer_-CPU_Processor processor. The actual parameter is the speed-factor of
this processor, which is affected by the RE with ID e1, defined above. The speed-factor
of this processor is: equal to the original in stage LC; 5 times the original one in stage
HC; and a fifth of the original in stage SU.

11 Last revision: July 2, 2015

LINE A LQN EXTENSIONS

Figure 1: Example XML file with LQN extensions - Part 1

<?xml version="1.0" encoding="UTF-8" 7>
<lgnExtensions>
<environment numStages="3" envID="el”>
<stage name="SU" >
<transition destName="LC” prob="0.5">
<resetRule ruleName="noReset” />
</transition>
<transition destName="HC” prob="0.5">
<resetRule ruleName="noReset” />
</transition>
<stageTime>
<coxID>coxStagel</coxID>
</stageTime>
</stage>
<stage name="LC">
<transition destName="HC” prob="1" >
<resetRule ruleName="noReset” />
</transition>
<stageTime>
<meanTime>100</meanTime>
</stageTime>
</stage>
<stage name="HC">
<transition destName="LC" prob="1">
<resetRule ruleName="noReset” />
</transition>
<stageTime>
<meanTime>200</meanTime>
</stageTime>
</stage>
</environment>

<envParameter id="VMContainer_ CPU_Processor”
paramName="speed—factor” envID="el”>
<envValue stage="LC” factor="1"/>
<envValue stage="HC” factor="5"/>
<envValue stage="SU” factor="0.27/>
</envParameter>

12 Last revision: July 2, 2015

LINE A LQN EXTENSIONS

Figure 2: Example XML file with LQN extensions - Part 2

<coxDistribution numPhases="2" coxID="erl”>

<phase meanTime="0.005” completionProb="0" phaselndex="1"/>
<phase meanTime="0.005" completionProb="1" phaselndex="2" />
</coxDistribution>

<coxDistribution numPhases="2" coxID="c1">

<phase meanTime="0.005" completionProb="0.5" phaselndex="1" />
<phase meanTime="0.01” completionProb="1" phaselndex="2" />
</coxDistribution>

<coxDistribution numPhases="2" coxID="coxStagel”>

<phase meanTime="10" completionProb="0.5" phaselndex="1"/>
<phase meanTime="10" completionProb="1" phaselndex="2"/>
</coxDistribution>

<coxParameter
id="InternalAction_main__Tul —-wMhoEeKON4DtRoKCMw_34_50_Activity”
coxID="erl” />

<coxParameter
id="InternalAction_addcart__5JEHQMhoEeKON4DtRoKCMw_34_50_Activity”
coxID="¢1" />

</lgnExtensions>

13 Last revision: July 2, 2015

LINE A LQN EXTENSIONS

A.2 Coxian distributions

To define a Coxian distribution, the following elements are involved:
1. coxDistribution: defines a Coxian distribution.

o Attributes

— numPhases: number of phases in the Coxian distribution.
— coxID: identifier of this Coxian distribution.

e Children:
— phase

2. phase: defines each of the phases in the Coxian. distribution.

e Attributes

— phaselndex: index of this phase, as these must be ordered
— meanTime: mean sojourn time spent in this phase

— completionProb: probability that the processing times terminates after
this phase

The example shown in Figures [1] and [2] defines a Coxian distribution named er! and
composed of 2 phases. The mean sojourn time in the first phase is 0.005 time units,
after which no completion occurs, and the service moves to the second phase. The
mean sojourn time in the second phase is also 0.005 time units, after which the service
terminates. Notice that this describes an Erlang distribution, with 2 phases, and rate
200 in each phase. Similarly, a second Coxian distribution is defined with id ”c1”.

After defining a Coxian distribution, we can use it to modify the execution times
assumed for specific activities in the LQN model. This is done by defining Coxian
parameters, which involves the following elements.

1. coxParameter: defines a Coxian parameter.

e Attributes
— id: ID of the LQN activity the processing time of which is modified to be
Coxian.

— coxID: identifier of the Coxian distribution used to described the process-
ing times of this activity.

The example shown in Figure [2| defines a Coxian parameter that affects the activity
identified as InternalAction-main__Iul-wMhoEeKON/DtRoKCMw_34_50_Activity. The
execution time of this activity is set to follow the Coxian distribution eri, defined above.

14 Last revision: July 2, 2015

LINE B LINE DEVELOPER’S GUIDE

B LINE Developer’s Guide

The sequence diagram in Figure[3|depicts the main steps in the operation of LINE. From
version 0.5, LINE operates as a server, accepting connections from clients. In addition
to the client, Figure 3| includes the four main components that make up LINE:

e LINE Server: Manages the connections with the Client, and performs the calls
necessary to the other components to build and solve the LINE PM.

e LINE Parser: Reads the input model description and transforms it into a LINE
PM.

e LINE Main Solver: Receives the PM and calls a solver to obtain the steady state
distribution of the PM. It uses this distribution to compute mean performance
measures. It also calls other solvers to obtain other metrics such as response time
distributions.

e LINE Fluid Solver: Provides routines to determine the steady state distribution of
a PM. It also provides routines to estimate response-time distributions for a PM.

Figure [3illustrates how a Client first establishes a connection with the LINE Server.
After a connection is established, the Client can submit models for solution. A model
specification is composed of two parts: a main LQN model, and an optional extension
(EXT) file, both in XML format. Once LINE receives a model for solution it parses
the basic LQN model first, and then parses the EXT file. Parsing the LQN model has
two main steps: first parsing the LQN XML file to reconstruct the LQN model, and
then obtaining the LINE performance model (PM). This PM is then extended with the
definitions included in the EXT file.

After these steps, the LINE PM is ready to be solved by the LINE solvers. The LINE
Main Solver calls the Fluid Solver in two steps: first to find the steady state distribution
of the PM, which it then uses to determine mean performance metrics; and second, to
determine the response time distribution. After these step are completed, the LINE Main
Solver returns the performance metrics to the LINE Server, which in turn exports them
in an XML file and sends the client a “Model Solved” message. The main advantage of
this operation is that LINE only needs to be initialized once to accept connections from
different clients, and to solve any number of models during any connection.

B.1 LINE classes

We now describe the main classes and scripts that make up the LINE components. As
LINE is implemented in MATLAB, it not only consists of a set of classes, but also of
purely procedural scripts. We divide the classes in three groups, depending on whether
they are used to describe LQN models, PMs, or others. The scripts are instead divided
according to the components they belong to, as listed in Figure

15 Last revision: July 2, 2015

LINE B LINE DEVELOPER’S GUIDE

X

Client: LineMainSolver: LineFluidSolver:

Establish connection >
D(Connection established

Submit model —

Parse model
Perf. Model

Parse extensions
Extended Model

Solve model

v
]

Solve mean metrics
»

e o ____

Solve RT distribution D

»
P

Performance Metrics
Model solved

<
— Close connection >7
FL(Connection closed JT

Figure 3: LINE Sequence Diagram

LQN classes This set of classes are used to describe LQN models, and their relations
are illustrated in Figure |4} The classes are

e Processor: describes a processor in the LQN model. Its properties include a list
of the tasks deployed on the processor.

e Task: describes a task in the LQN model. Its properties include a list of the entries
and activities within the task. The activity graph and precedences describe how
the activities are executed.

e Entry: describes an entry in the LQN model. Its properties include a list of the
activities executed when the entry is called.

e Activity: describes an activity in the LQN model, which is the basic execution
unit. Its properties include the mean demand of the activity on the resource where
it is executed.

e Precedence: provides a link between two or more activities, which are used to
describe the activity graph.

EXT classes These classes, depicted in in Figure[d] are used to describe two extensions
to the LQN models: Coxian distributions for the processing times, and the Random
Environments (RE) for reliability modeling. The classes are

e RE: describes a random environment, including its stages, transition rates, reset
rules, and the parameters in the LQN model affected by the RE.

16 Last revision: July 2, 2015

LINE B LINE DEVELOPER’S GUIDE

e COX: describes a Coxian distribution, including its states, transition rates, and
completion probabilities, as well as the activities in the LQN model that follow
this distribution.

LQN classes EXT classes
processor task entry COX
1 1l 1 1.4
1
1
RE
1% 1.%
precedence activity
1 1

Figure 4: LINE LQN and EXTClasses

PM classes This set of classes, depicted in Figure [5| are used to describe the per-
formance model (PM) underlying LINE. There are four classes that describe different
versions of the PM:

e CMCQNCS: describes the basic PM underlying LINE. CMCQNCS stands for Closed
Multi-Class Queueing Network with Class Switching, which is the basic PM. Its
description can be found in [3].

e CMCQNCSRE: describes a CMCQNCS extended with a random environment (RE),
which is used when an RE is specified.

e CMCQNCSCox: describes a CMQNCS extended to handle general (Coxian) distribu-
tions for the processing times.

e CMCQNCSRECox: describes a CMCQNCS extended to handle general (Coxian) dis-
tributions for the processing times, and a random environment.

PM classes
CMCQNCS CMCQNGSRE LINE Main class

LINE_obj_SEFF

CMCQNCSCox CMCQNCSRECox

Figure 5: LINE PM and Solver Classes

17 Last revision: July 2, 2015

LINE B LINE DEVELOPER’S GUIDE

LINE Main class As depicted in Figure[5] the main LINE class is LINE_obj_SEFF, which
is part of the LINE Server, and is in charge of interacting with the LINE parser to obtain
the PM, and its extension, and with the LINE Main Solver to obtain the performance
metrics.

The LINE obj_SEFF class is also in charge of implementing one of the key features
of LINE: the parallel evaluation. There are three types of operation: Sequential, Parfor,
and Batch Engine. The LINE obj_SEFF class has these 3 modes, and one of them is
used according to the configuration parameters. To support the Batch Engine mode,
this class creates the connection to the local cluster, and maintains a list of the jobs
processed and their status.

B.2 LINE scripts

In addition to the set of classes described in the previous section, LINE mainly consists
of a number of procedural scripts, which implement the main functionalities belong to
each of the main components.

LINE Server The scripts in this component are depicted in Figure [6]

e LINE: This script is called to start the LINE application. It receives the location of
the configuration file as argument.

e LINEserver: This script manages the connections and receives the commands from
the Client.

e LINEprotocolXML: This script parses the commands received from the client and
submits the models for solution to the LINE Main class.

e writeXMLresults_SEFF: This script exports the results to an XML file. It is used
by the LINE Main class.

LINE Server scripts

LINE LINEserver LINEprotocolXML

writeXMLresults_SEFF

Figure 6: LINE Server Scripts

LiNE Parser The scripts in this component are depicted in Figure

e parseXML_LQN: this script reads the XML file containing the LQN description of
the model to solve, and builds a set of objects using the LQN classes.

18 Last revision: July 2, 2015

LINE

B LINE DEVELOPER’S GUIDE

LINE

readXML_CMCQNCS_SEFF: this is the main script to perform the transformation from
the LQN objects to the PM description, which is returned in the form of a CMCQNCS
object.

readXML_CMCQNCS_addEntries _SEFF: this script supports the previous one by re-
cursively exploring the LQN objects to build the PM.

parseXML_COX: this script parses an extension (EXT) file to build one or more COX
objects, which describe the Coxian distributions to extend the LQN model.

parseXML_RE: this script parses an extension (EXT) file to build one or more RE
objects, which describe the Random Environment (RE) to extend the LQN model.

LINE Parser scripts
parseXML_LQN parseXML_COX parseXML_RE
'
readXML_CMCQNCS_SEFF read XML_CMCQNCS_addEntriesP_SEFF

Figure 7: LINE Server Scripts

Main Solver The scripts in this component are depicted in Figure

CMCQN_CS_analysis_SEFF: this is the main script of the transformation and oper-
ates on a CMCQNCS object as PM. It calls the Fluid Solver to obtain the stationary
distribution of the PM, which it uses to obtain the mean performance measures.
It also calls the Fluid Solver to obtain the response time distributions.

CMCQN_CS_RE_analysis_SEFF: this is a similar script as the one above, but operates
on a CMCQNCSRE object as PM, thus considering an extended PM with RE.

CMCQN_CS_Cox_analysis_SEFF: this is a similar script as the first one, but operates
on a CMCQNCSCox object as PM, thus considering an extended PM with Coxian
distributions.

CMCQN_CS_Cox_RE_analysis_SEFF: this is a similar script as the first one, but op-
erates on a CMCQNCSRECox object as PM, thus considering an extended PM with
both RE and Coxian distributions.

CMCQN_CS_respTime_SEFF: this script supports all the other scripts above by com-
puting performance metrics for the intermediate LQN tasks, referred to as SEFF
in Palladio.

19 Last revision: July 2, 2015

LINE REFERENCES

LINE Main Solver scripts
CMCQN_CS_analysis SEFF CMCQN_CS_Cox_RE_analysis_ SEFF
CMCQN_CS_respTime_SEFF
CMCQN_CS_Cox_analysis_SEFF CMCQN_CS_RE_analysis_SEFF

Figure 8: LINE Main Solver Scripts

LINE Fluid Solver The scripts in this component, depicted in Figure[9] can be divided
in two groups: the first group, composed of the scripts on the left column in Figure [9]
focuses on PM models without RE; the second group, composed of the scripts on the
right column in Figure [9, focuses on PM models with RE. The scripts that solve PMs
without RE are

e CMCQN_CS_fluid ps: this script sets up the fluid model that represents the PM
(CMCQNCSCox object), and solves it using MATLAB ODE solvers. Returns the
stationary distribution of the PM.

e CMCQN_CS_fluid_ps_RT: this script sets up a fluid model to compute response time
distributions.

e CMCQN_CS_fluid analysis: this script defines the ODE system of the fluid model,
which is used by the MATLAB ODE solvers.

The scripts that solve PMs with RE are defined similarly.

References

[1] D. Ardagna, M. Ciavotta, M. Shokrolahi, G. Gibilisco, G. Casale, and J. Pérez.
MODACIouds Deliverable D5.4.1. Prediction and cost assessment tool - Proof of
concept. http://www.modaclouds.eu/software/, 2013.

[2] G. Casale, J. F. Pérez, and W. Wang. QD-AMVA: Evaluating systems with queue-
dependent service requirements. In Proceedings of IFIP PERFORMANCE, 2015.

[3] J. F. Pérez and G. Casale. Assessing SLA compliance from Palladio component
models. In Proceedings of the 2nd MICAS, 2013.

20 Last revision: July 2, 2015

REFERENCES

LINE

LINE Fluid Solver scripts

CMCQN_CS_RE_fluid_ps

CMCQN_CS_fluid_ps

T
|

v v
CMCQN_CS_fluid_analysis_ps CMCQN_CS_RE _fluid_analysis_ps

A
|
|

R
|
I

CMCQN_CS_RE_fluid_ps_RT

CMCQN_CS_fluid_ps_RT

Figure 9: LINE Fluid Solver Scripts

Last revision: July 2, 2015

21

	Introduction
	New features
	Installation Instructions
	Using the Line scripts
	Using the Line binaries
	Common steps: Line and the MCR
	Palladio Bench (with SPACE 4Cloud patch)
	SPACE 4Cloud

	User's Guide
	Starting Line
	Using Line from SPACE4Cloud
	Using Line from Palladio Bench
	Using Line from a client

	Where to download and how to cite Line
	LQN Extensions
	Random environments
	Coxian distributions

	Line Developer's Guide
	Line classes
	Line scripts

