
Scheduling on Power-Heterogeneous Processors

Susanne Albersa,1, Evripidis Bampisb,2, Dimitrios Letsiosc,3, Giorgio
Lucarellid,4, Richard Stotza

aFakultät für Informatik, Technische Universität München, Germany
bSorbonne Universités, UPMC Univ. Paris 06, UMR 7606, LIP6, Paris, France

cUniversité Côte d’Azur, Inria, CNRS, I3S, Sophia Antipolis, France
dUniversité Grenoble-Alpes, INP, UMR 5217, LIG, France

Abstract

We consider the problem of scheduling a set of jobs, each one specified by
its release date, its deadline and its processing volume, on a set of heteroge-
neous speed-scalable processors, where the energy-consumption rate is processor-
dependent. Our objective is to minimize the total energy consumption when
both the preemption and the migration of jobs are allowed. We propose a new
algorithm based on a compact linear programming formulation. Our method
approaches the value of the optimal solution within any desired accuracy for
a large set of continuous power functions. Furthermore, we develop a faster
combinatorial algorithm based on flows for standard power functions and jobs
whose density is lower bounded by a small constant. Finally, we extend and
analyze the AVerage Rate (AVR) online algorithm in the heterogeneous setting.

Keywords: Heterogeneous Processors, Scheduling, Speed-Scaling, Energy,
Approximation Algorithms, Online Algorithms

1. Introduction

Nowadays energy consumption of computing devices is an important issue in
both industry and academia. One of the main technological alternatives in order
to take into account the energy consumed in modern computer systems is based
on the use of speed-scalable processors where the speed of a processor may be
dynamically changed over time. When a processor runs at speed s, then the
rate with which the energy is consumed (i.e., the power) is f(s) with f being a
non-decreasing function of the speed. According to the well-known cube-root
rule for CMOS devices, the speed of a device is proportional to the cube-root of

IA preliminary version has been presented to LATIN 2016
1Work supported by the European Research Council, Grant Agreement No. 691672, and

the German Research Foundation, project AL464/9-1.
2Work supported by projet GDR-RO AGaPe of CNRS.
3Work supported by ANR project Stint and ANR program ”Investments for the Future”.
4Work supported by ANR project Moebus.

Preprint submitted to Elsevier July 17, 2017

the power and hence f(s) = s3. However, the standard model that is usually
studied in the literature considers that the power is f(s) = sα with α > 1 a
constant. Other works consider that the power is an arbitrary convex function
[7, 9].

The algorithmic study of this area started with the seminal paper of Yao
et al. [20], where a set of jobs, each one specified by its work, its release date
and its deadline, has to be scheduled preemptively on a single processor so
that the energy consumption is minimized. In [20], an optimal polynomial-time
algorithm has been proposed for this problem, while Li et al. [19] proposed an
optimal algorithm with lower running time. The homogeneous multiprocessor
setting in which the preemption and the migration of the jobs are allowed has
been also studied. Chen et al. [12] proposed a greedy algorithm if all jobs have
common release dates and deadlines. Bingham and Greenstreet [11] presented a
polynomial-time algorithm for the more general problem with arbitrary release
dates and deadlines. Their algorithm is based on solving a series of linear
programs. Since the complexity of this algorithm can be high for practical
applications, Albers et al. [1] and Angel et al. [3], independently, have been
interested in the design of a combinatorial algorithm. Both works are based on
the computation of several maximum flows in appropriate networks.

Albers et al. [1] have also considered the online version of the multipro-
cessor problem with homogeneous processors and they studied two well-known
algorithms, namely the Optimal Available (OA) and the Average Rate (AVR),
which have been originally proposed by Yao et al. in [20] for the single-processor
setting. Specifically, they proved that OA is αα-competitive and that AVR is
(2α−1αα + 1)-competitive. Note that, for the single-processor case, the competi-
tive ratio of OA cannot be better than αα [10], while the lower bound for AVR
is 2α−1αα [8].

When migrations of jobs are not allowed, the problem is strongly NP-hard
even in the special case with homogeneous processors and unit work jobs [2].

Furthermore, there exists a (1 + ε)αB̃α-approximation algorithm, where α is the

maximum power exponent and B̃α is the α-generalized Bell number [6]. When
both migrations and preemptions are forbidden, the problem is strongly NP-hard
even in the case with a single processor [4]. In this setting, the approximability
of the problem is an open question. For the special case with homogeneous
processors, there exists a O((wmax/wmin)α)-approximation algorithm [5] as well
as a quasi-polynomial time approximation scheme (QPTAS) producing a (1 + ε)-
approximate solution in nO(polylog(n)) time [18].

In this paper, we consider the problem of scheduling a set of jobs on a
set of power-heterogeneous processors when the preemption and the migration
of the jobs are allowed. In our setting, each processor Pp is characterized by
its own power function. This means that if a processor Pp runs at speed s,
then its power is given by a non-decreasing function fp(s). The motivation to
study power-aware scheduling problems is based on the need for more efficient
computing. Indeed, parallel heterogeneous systems with multiple cores running
at lower frequencies offer better performances than a single core. However, in

2

order to exploit the opportunities offered by the heterogeneous systems, it is
essential to focus on the design of new efficient power-aware algorithms taking into
account the heterogeneity of these architectures. In this direction, some recent
papers [6, 16, 17] have studied the impact of the introduction of the heterogeneity
on the difficulty of some power-aware scheduling problems. Especially in [16],
Gupta et al. show that well-known priority scheduling algorithms that are energy-
efficient for homogeneous systems become energy inefficient for heterogeneous
systems.

For the case where job migrations are allowed and the heterogeneous power
functions are convex, an algorithm has been proposed in [6] that returns a
solution within an additive factor of ε far from the optimal and runs in time
polynomial to the size of the instance and to 1/ε. This result generalizes the
results of [1, 3, 7, 11] from the homogeneous setting to the heterogeneous one.
However, the algorithm proposed in [6] is based on solving a configuration
linear program using the Ellipsoid method. Given that this method may not
be very efficient in practice, we focus on other approaches. We first propose a
polynomial-time algorithm based on a compact linear programming formulation
which solves the problem within any desired accuracy. Our algorithm does not
need the use of the Ellipsoid method like in [6] and it applies for a large family
of continuous non-decreasing power functions.

The above result leaves open a natural question: is it possible to generalize
the flow-based approach used in [1, 3] for the homogeneous multiprocessor problem
to the power-heterogeneous case? This question is interesting even for standard
power functions of the form fp(s) = sαp . This last case is the goal of the second
part of our paper. However, when power-heterogeneous processors are considered
some structural properties of the optimal schedules of the homogeneous case
are no longer valid. For instance, in the heterogeneous setting, in any optimal
schedule, the speed of a job is not necessarily unique, but it may change when
parts of the same job are executed on different processors. A second difficulty
comes from the fact that, while in the homogeneous case the processor on which
a job is executed at a given time has no influence on the energy consumption, this
is a crucial decision when scheduling on heterogeneous multiprocessors. Here, we
overcome these subtle difficulties and propose a max-flow based algorithm which
is more complicated than its homogeneous counterpart (for example, the network
formulation is more enhanced). In particular, we show that it produces a solution
arbitrarily close to the optimal for jobs whose density is lower bounded by a
small constant; this constant depends on the exponents of the power functions.
The above assumption ensures that no job is processed with a speed less than
one by any processor and allows us to solve the problem by performing maximum
flow computations in a principled way. Note that this assumption is reasonable
in practice because the speed of a processor is multiple CPU cycles per second.

The third part of our paper is devoted to the analysis of the well known online
algorithm AVR. Our analysis simplifies the analysis in [1] for the homogeneous
case and allows us to extend it in the power-heterogeneous setting. Specifically,
we prove that Heterogeneous-AVR is ((1 + ε)(ρ + 1))-competitive algorithm
for arbitrary power functions, where ρ is the worst competitive ratio of the

3

single-processor AVR algorithm among all processors. This turns to be ((1 +
ε)(αα2α−1 + 1))-competitive algorithm for standard power functions of the form
fp(s) = sαp , where α is the maximum power exponent among all processors.

In the following section we formally define our problem and we give the
notation that we use. In Section 3, we present our LP-based algorithm, while
in Section 4 we describe a flow-based combinatorial algorithm. Finally, the
Heterogeneous-AVR and its analysis are given in Section 5.

2. Problem Definition and Notations

An instance of the heterogeneous speed-scaling problem consists of a set of
n jobs J = {J1, J2, . . . , Jn} which have to be executed by a set of m parallel
speed-scalable power-heterogeneous processors P = {P1, P2, . . . , Pm}. Each job
Jj is specified by an amount of work wj , a release time rj and a deadline dj . We
say that Jj is alive during an interval of time I, if I ⊆ [rj , dj). Moreover, we
define the density of a job Jj as δj =

wj
dj−rj .

The speed of a processor can be varied over time and it corresponds to the
amount of work that the processor executes per unit of time. Furthermore, the
power of processor Pp (i.e. its instantaneous energy consumption) is assumed to
be a function fp(s) of its speed. We consider two classes of functions:

1. Arbitrary Power Functions: The function fp(s) of each processor Pp is an
arbitrary and continuous function of s. However, we require an oracle for
computing fp(s) in polynomial time, for any value of s.

2. Standard Power Functions : Each processor Pp satisfies the power function
fp(s) = sαp , where αp > 1 is a small constant. This is the usual assumption
in the speed-scaling literature. Note that, we denote by α the maximum
power exponent, i.e., α = maxp∈P{αp}.

During an interval of time I, the energy consumption of Pp is
∫
I
fp(sp,t)dt,

where sp,t is the speed of Pp at t ∈ I. The objective is to find a minimum
energy schedule such that every job Jj is executed during the interval [rj , dj).
Preemptions and migrations of jobs are allowed, which means that a job may
be executed, suspended and resumed later from the point of suspension on the
same or on a different processor. However, we do not allow parallel execution of
a job, i.e., each job may be executed by at most one processor at each time.

We define the important times t1 < t2 < . . . < t` < t`+1 which correspond to
all the different possible release dates and deadlines of jobs, sorted in increasing
order. Moreover, let Ii = [ti, ti+1), for i = 1, 2, . . . , ` and I be the set of all Ii’s.
We denote by ni the number of jobs which are alive during Ii. Then, for each
interval Ii ∈ I, we define mi = min{m,ni}. Furthermore, we denote by J (t)
and J (I) the set of the alive jobs at time t and during the interval I, respectively.
At a given time t, we say that processor Pp is occupied if it executes some job, or
we say that it is idle, otherwise. For a given schedule S, we define by E(S) the
total energy consumption of S. Finally, we denote by S∗ an optimal schedule
and by OPT = E(S∗) its energy consumption.

4

3. LP-based Algorithm for Generalized Power Functions

In this section we present a linear program (LP) for the heterogeneous
speed-scaling problem for a wide family of continuous power functions. Our
formulation is more compact than the configuration LP proposed in [6] which
contains an exponential number of variables and requires the use of the Ellipsoid
method. Moreover, the formulation in [6] is polynomially solvable only for convex
functions.

In order to define our LP, we discretize the possible speed values. Let sLB and
sUB be a lower and an upper bound, respectively, on the speed of any processor
in an optimal schedule. For example, we could choose sLB = wmin/[m

∑
i |Ii|]

and sUB =
∑
j wjdj/|Imin|. Given a constant ε > 0, we geometrically discretize

the interval [sLB , sUB] and we define the set of discrete speeds D = {sLB ,
sLB(1 + ε), sLB(1 + ε)2, . . . , sLB(1 + ε)k}, where k = min{i : sLB(1 + ε)i ≥ sUB}.
The set D contains O(1

ε log(sUBsLB
)) different speeds.

We consider a wide class of continuous power functions satisfying the following
invariant: for any speed value s ∈ [sLB , sUB] and small constant ε > 0, there
exists a sufficiently small constant ε′ > 0 such that f((1+ε)s) ≤ (1+ε′)f(s). Note
that ε′ is a characteristic of the function f . For example, in the case of standard
power functions, we have that f((1 + ε)s) ≤ (1 + ε′)f(s) with ε′ = (1 + ε)α − 1.
In the reminder of this section, we consider this kind of functions.

Lemma 1. There exists a (1 + ε′)-approximate schedule such that, at each
time, the speed of every processor belongs to the discrete set D, where |D| =
O(1

ε log(sUBsLB
)).

Proof. Consider an optimal schedule S∗. Starting from S∗, we produce a new
schedule S as follows. For each processor Pp and time t, Pp executes the same
job at t in both schedules but its speed is rounded up to the closest speed in the
discrete set D. Clearly, the new schedule is feasible because at least wj units of
work are executed for each job Jj . Let sp,t and s∗p,t be the speed of processor
Pp at time t in schedule S and S∗, respectively. For simplicity, assume that the
earliest release time is at time 0 and that the latest deadline is equal to T . Then,
for any small constant ε > 0,

E(S) =

m∑
p=1

∫ T

0

fp(sp,t)dt ≤ (1 + ε′)

m∑
p=1

∫ T

0

fp

(
sp,t

1 + ε

)
dt

≤ (1 + ε′)

m∑
p=1

∫ T

0

fp(s
∗
p,t)dt = (1 + ε′)E(S∗)

where ε′ > 0 is a small constant. The first inequality comes from the fact that
fp(s) satisfies our assumption and the second inequality holds because fp(s) is
increasing. �

The feasibility of our LP formulation is based on the following lemma.

5

Lemma 2. Consider a schedule S and let ti,j,p,s be the total amount of time
that job Jj is processed during the interval Ii by the processor Pp with speed s.
Then, S is feasible if and only if all the following hold.
–
∑
i,p,s ti,j,p,s · s ≥ wj, for each job Jj,

–
∑
p,s ti,j,p,s ≤ |Ii|, for each interval Ii and job Jj, and

–
∑
j,s ti,j,p,s ≤ |Ii|, for each interval Ii and processor Pp.

Proof. If all the conditions of the statement are satisfied, there exists a feasible
schedule which can be constructed by producing a partial schedule for each
interval Ii as follows. During Ii, we assume that each job Jj consists of m
operations, where the i-th operation has processing time

∑
s ti,j,p,s and it must

be entirely executed by processor Pp. Given that the last two properties are
satisfied, such a schedule can be constructed by the algorithm of Gonzalez and
Sahni [14] for the well known preemptive open shop problem. The operation of
job Jj on processor Pp during the interval Ii is executed with speed s for ti,j,p,s
units of time, for every s ∈ D. By the first property, we get that each job is
entirely executed.

To the other direction, assume that at least one of the properties is not true.
If the first property is not true, then at least one job is not entirely executed. If
the second property does not hold, then it is not possible to construct a schedule
such that each job is executed by at most one processor at each time. Finally, if
the third property is not true, then we cannot produce a schedule in which each
processor executes at most one job per time. �

Let Ep,s = fp(s) be the power consumption of processor Pp if it runs with
speed s. We introduce a variable xi,j,p,s which corresponds to the total amount
of time that the job Jj is processed during the interval Ii by the processor Pp
with speed s. Then, we obtain the following LP:

min
∑

i,j,p,s

xi,j,p,s · Ep,s∑
i,p,s

xi,j,p,s · s ≥ wj ∀j

∑
p,s

xi,j,s,p ≤ |Ii| ∀i, j

∑
j,s

xi,j,p,s ≤ |Ii| ∀i, p

xi,j,p,s ≥ 0 ∀i, j, p, s

Given a solution of the above LP, we obtain an operation of job Jj on
processor Pp with processing time

∑
s xi,j,p,s during each interval Ii. So, for each

Ii, we obtain an instance of the preemptive open shop problem, which can be
solved in polynomial time with the algorithm of Gonzalez and Sahni [14]. This
observation implies an algorithm for our problem, and the following theorem
holds.

6

Theorem 1. There is an algorithm which produces an (1 + ε′)-approximate
schedule in O(poly(n,m, 1ε , log sUB

sLB
)) time.

4. Flow-based Algorithm for Standard Power Functions

In this section, we first characterize the structure of an optimal solution
for the heterogeneous speed-scaling problem with power functions of the form
fp(s) = sαp and jobs whose density is lower bounded by a small constant, which
is defined below. Then, we derive a combinatorial algorithm based on flow
computations.

4.1. Structure of an Optimal Schedule

We elaborate on the structure of a specific optimal schedule and we derive a
set of properties and lemmas which are always satisfied by this optimal schedule.
Since we allow preemptions and migrations of jobs, more than one processors
may execute part of one job Jj . Due to convexity of the power functions, in any
minimum energy schedule, the part of job Jj assigned to processor Pp is executed
(preemptively) with constant speed sj,p. Of course, a job may be executed with
different speeds by different processors. However, the following lemma shows
that these speeds are related through the derivatives of the power functions.

Lemma 3. For each job Jj ∈ J which is partially executed by the processors
Pp and Pq with speeds sj,p and sj,q, respectively, it holds that f ′p(sj,p) = f ′q(sj,q).

Proof. Assume that Jj is executed by Pp and Pq during two disjoint intervals

I and Ĩ, respectively. Let w be the amount of work of Jj executed during these

intervals, i.e. w = |I| · sj,p + |Ĩ| · sj,q. Note that 0 < sj,p <
w
|I| and 0 < sj,q <

w
|Ĩ| .

Moreover, the energy consumption for the execution of w is equal to

|I| · fp(sj,p) + |Ĩ| · fq(sj,q) = |I| · fp(sj,p) + |Ĩ| · fq
(
w − |I| · sj,p

|Ĩ|

)
We will show that the above expression is minimized when f ′p(sj,p) = f ′q(sj,q).

Consider the function g(s) = |I| · fp(s) + |Ĩ| · fq
(
w−|I|·s
|Ĩ|

)
with domain of

definition the interval
[
0, w|I|

]
. By the derivation of g(s), we get g′(s) = |I| ·[

f ′p(s)− f ′q
(
w−|I|·s
|Ĩ|

)]
, for which it holds that g′(0) < 0 and g′(w|I|) > 0. Since

the functions fp(s) and fq(s) are convex, the functions f ′p(s) and f ′q(s) are
increasing with s. That is, the function g′(s) is also increasing with s in the

interval
[
0, w|I|

]
. Therefore, by equating g′(s) with zero, we get that g(s) is

minimized for the unique value of s satisfying f ′p(s) = f ′q

(
w−|I|·s
|Ĩ|

)
= f ′q(s). �

The above lemma describes the relation of the speeds of a job on different
processors. Based on this, we define the hypopower of a job Jj ∈ J as Qj =
f ′p(sj,p), for every Pp ∈ P. The following property is a corollary of Lemma 3.

7

Property 1. Each job Jj ∈ J is executed with constant hypopower Qj.

The following property implies that the jobs which are executed at each time
are the ones with the greatest hypopowers.

Property 2. For each pair of jobs Jj , Jk ∈ J and time t ∈ [rj , dj) ∩ [rk, dk)
such that Jj is executed at t and Jk is not executed at t, it holds that Qj ≥ Qk.

Proof. Assume for the sake of contradiction that the property does not hold.
Then, there exists a pair of jobs Jj , Jk and an interval I ⊆ [rj , dj)∩ [rk, dk) such
that Jj is executed during I by some processor Pp, Jk is not executed during I

and it holds that Qj < Qk. Let Ĩ ⊆ [rk, dk) be an interval during which Jk is
executed by some processor Pq. We modify the schedule as follows. We increase
Qj so that an idle period appears during I and we decrease Qk by executing
part of Jk during this idle period. A similar argument to the one for proving
Lemma 3 implies that this modification results in a schedule of lower energy. �

In the following lemma we set the minimum job density such that all speeds
in the optimal schedule are at least one.

Lemma 4. Assume that δj ≥ maxp,q{(αpαq)1/(αq−1)} for every Jj ∈ J . For

every pair of job Jj ∈ J and processor Pp ∈ P, it holds that sj,p ≥ 1.

Proof. Since we do not allow parallel execution of a job, in any feasible schedule,
including the optimal one, there exists a processor Pq which executes job Jj
with speed sj,q ≥ δj . Given that the function fq(s) is convex, this means
that f ′q(sj,q) ≥ f ′q(δj). By Lemma 3, we have that f ′p(sj,p) = f ′q(sj,q) for any

Pp ∈ P. Hence, f ′p(sj,p) ≥ f ′q(δj), that is αp · s
αp−1
j,p ≥ αq · δ

αq−1
j . Thus,

using our assumption about the minimum density we get that αp · s
αp−1
j,p ≥

αq

(
(
αp
αq

)1/(αq−1)
)αq−1

, and the lemma follows. �

By using Lemma 4, we can define an order P1, P2, . . . , Pm of the processors
such that for any value of speed s ≥ 1, we have that f1(s) ≤ f2(s) ≤ . . . ≤ fm(s).
Observe that this order is obtained by sorting the processors in non-decreasing
order of their power exponent, i.e., α1 ≤ α2 ≤ . . . ≤ αm. Furthermore, it is
not hard to verify that, for every speed s of a job in the optimal schedule, it
also holds that f ′1(s) ≤ f ′2(s) ≤ . . . ≤ f ′m(s). Based on the above, we say that
Pp ∈ P is cheaper than Pq ∈ P if p < q; similarly, Pq is more expensive than Pp.
The following lemma implies that cheap processors run, in general, with greater
speeds than expensive processors in the optimal schedule.

Lemma 5. For an interval I and any pair of jobs Jj , Jk ∈ J executed by the
processors Pp, Pq ∈ P during whole I, respectively, if p < q then sj,p ≥ sk,q.

Proof. Assume for contradiction that in the optimal schedule it holds that
sj,p < sk,q. Let g(s) = |I| · [fq(s)− fp(s)]. Then, we obtain a new schedule by

8

exchanging the speeds and the jobs executed by the two processors during I. By
comparing the two schedules, we have that

Enew − Eopt = |I| (fp(sk,q) + fq(sj,p)− [fp(sj,p) + fq(sk,q)]) = g(sj,p)− g(sk,q)

Since p < q, it must be the case that g′(s) = f ′q(s) − f ′p(s) ≥ 0 for every
s ≥ 1, which means that the function g(s) is non-decreasing with s. Given
our assumption that sj,p < sk,q, we have that g(sj,p) ≤ g(sj′,q). Therefore,
Enew ≤ Eopt which means that the new schedule is also optimal. �

The next property implies that cheap processors execute, in general, jobs
with greater hypopowers compared to expensive processors.

Property 3. For an interval I and any pair of jobs Jj , Jk ∈ J executed by the
processors Pp, Pq ∈ P during whole I, respectively, if p < q then Qj ≥ Qk.

Proof. Let w = |I| · sj,p and w̃ = |I| · sk,q be the amount of work executed for
Jj and Jk, respectively, during I and assume for contradiction that Qj < Qk.
We modify the schedule as follows. The work w+ w̃ is executed by the processors
Pp and Pq during the whole interval I with constant hypopower. That is, w+ w̃
units of work are now executed during the whole interval I by the processors
Pp and Pq with constant speeds sp and sq such that f ′p(sp) = f ′q(sq) and
w + w̃ = |I| · (sp + sq). A similar argument with the one that we used in the
proof of Lemma 3 implies the energy consumption of the new schedule is lower.
In order to reach a contradiction, it remains to show that the new schedule is
feasible, i.e. both Jj and Jk are executed for exactly |I| units of time during I.

Obviously, Qj < Q < Qk. That is, in order to produce the new schedule,
we decrease the hypopower for executing w and we increase the hypopower for
executing w′. Now, a part of w is executed by Pq and a part of w̃ is executed by
Pp. The remaining parts of w and w̃ are still executed by Pp and Pq, respectively.
In order to show that the new schedule is feasible, we will prove that there exists
a value t ∈ [0, |I|] satisfying the following. During I, the execution time of Jj
is equal to t on Pp and |I| − t on Pq. Furthermore, the execution time of Jk is
t on Pp and |I| − t. So, it must be the case that w = t · sp + (|I| − t) · sq and
w̃ = (|I| − t) · sp + t · sq. By solving these equations with respect to sp and

equating them, we get that t =
w−|I|sq

w+w̃−2|I|sq |I|. It remains to show that t ∈ [0, |I|],
or, equivalently,

0 ≤ w − |I|sq
w + w̃ − 2|I|sq

≤ 1 (1)

Given that Qj < Q < Qk, it holds that sj,p < sp and sq < sk,q. Since the
initial schedule is optimal, by Lemma 5, we have that sj,p ≥ sk,q. As a result,
we have that sp > sq. Moreover, the fact that sj,p ≥ sk,q implies that w ≥ w̃.
Overall, we get that 2|I|sq < |I|(sp + sq) = w + w̃ ≤ 2w. By the last expression,
it holds that w > |I|sq and w + w̃ > 2|I|sq. Hence, the first inequality of
expression (1) is true. Since sk,q > sq, we get that w̃ > |I|sq. Thus, the second
inequality of expression (1) is also true. �

9

The next property specifies the set of occupied processors at each time; these
are the mi cheapest ones. The remaining processors are idle. This means that, in
the optimal schedule, the total processing time of all jobs is equal to

∑
i{mi · |Ii|},

i.e., the maximum possible that any feasible schedule may have.

Property 4. During an interval Ii ∈ I, the processors in {P1, P2, . . . , Pmi} are
occupied, while the processors in {Pmi+1, Pmi+2, . . . , Pm} are idle.

Proof. Initially, we claim that exactly mi processors are occupied at any t ∈ Ii.
In order to prove our claim, it suffices to show that, for every interval I ⊆ Ii,
the total processing time of all jobs during I is exactly mi · |I|. In any feasible
schedule, the total execution time of all jobs during I cannot exceed m · |I|, since
there are m processors available. Moreover, it cannot be more than ni ·|I| because
there are exactly ni alive jobs during I and a job is allowed to be executed by at
most one processor at each time. On the other hand, in the optimal schedule,
the total execution time during I cannot be less than min{m,ni} · |I|. Otherwise,
there would be a sub-interval Ĩ ⊆ I, a job Jj which is alive but not executed

during Ĩ and a processor which is idle during Ĩ. In this case, we could execute
part of Jj during Ĩ by decreasing the speeds of Jj during all the intervals in
which it is executed in a way that constant hypopower is attained. A similar
argument with the one for proving Lemma 3 implies that we could produce a
schedule of lower energy consumption. So, our claim is true, which means that
exactly mi processors are occupied at t. Obviously, by Lemma 4, the cheapest
option is to use processors P1, P2, . . . , Pmi . �

The following corollary, which follows directly from Properties (1)-(4) implies
that if we know the hypopowers of the jobs in the optimal schedule, then we
know the speed of each processor at each time.

Corollary 1. Consider an interval Ii ∈ I and let Jjk be the the alive job during
Ii with the k-th greatest hypopower, breaking ties arbitrarily. Then, at each time
t ∈ Ii, processors P1, P2, . . . , Pmi run with hypopowers Qj1 ≥ Qj2 ≥ . . . ≥ Qjmi ,
respectively. Moreover, processors Pmi+1, Pmi+2, . . . , Pm are idle.

Theorem 2. Properties (1)-(4) are necessary and sufficient for optimality.

Proof. Up to this point, we have showed the existence of an optimal schedule
satisfying Properties (1)-(4). It remains to prove that these properties are also
sufficient for optimality. In particular, we show that all schedules satisfying the
properties attain equal energy consumption.

For a given schedule S satisfying Properties (1)-(4), we denote by E(S)
its energy consumption and by Qj(S) the hypopower of job Jj ∈ J . Assume
for contradiction that there exist two different schedules A and B satisfying
Properties (1)-(4) such that E(A) 6= E(B). Clearly, there exists at least one job
Jj such that Qj(A) 6= Qj(B). Otherwise, due to Corollary 1, schedules A and B
attain equal energy consumption. Without loss of generality, we assume that
there is at least one job Jj with Qj(A) < Qj(B). Let L = {Jj : Qj(A) < Qj(B)}

10

be the non-empty subset of jobs with lower hypopower in A than in B. We will
show that the total amount of work executed for the jobs in L is strictly smaller
in A compared to B. Then, we will have reached a contradiction on the fact
that, in both schedules, exactly wj units of work should be executed for each
job Jj .

We fix a time t. Let L(A) ⊆ L be the set consisting of all jobs in L which
are executed at time t in A. We denote by Jaj , 1 ≤ j ≤ |L(A)|, the job executed
with the j-th highest speed among the jobs in L(A), at time t in schedule A,
breaking ties arbitrarily. Analogously, we define the set L(B) and the job Jbj ,
for 1 ≤ j ≤ |L(B)|, with respect to schedule B. By the definition of the set L
and Property 2, it is not hard to verify that |L(A)| ≤ |L(B)|. Moreover, consider
any pair of jobs Jaj and Jbj , for some 1 ≤ j ≤ |L(A)|. Assume that Jaj and Jbj
are executed by processors Ppj and Pqj in schedules A and B, respectively. By
the definition of the set L and Property 3, we get that pj ≥ qj . So, by Lemma
5, job Jaj is executed at t in A with strictly lower speed than the one of Jbj at
t in B. We have showed that there is a one-to-one correspondence of the jobs
in L(A) to jobs in L(B) (by possibly ignoring some jobs in L(B)) such that, at
time t, every job in L(A) has strictly lower speed in schedule A than the speed
that its corresponding job in L(B) has in schedule B. �

4.2. Presentation and Analysis of the Algorithm

Given the optimal structure presented in the previous section, we are now
ready to describe a polynomial-time algorithm which is based on maximum flow
computations. Initially, we present the high-level idea of the algorithm and, then,
we describe its main components, in more detail, together with its analysis.

4.2.1. High-Level Idea.

Initially, we define a slightly more general problem which is the one that
the algorithm actually solves. An instance of this problem is specified by a
triple < J ,P, I >. Specifically, there is a set J of n jobs which have to be
executed by a set P of m parallel processors during a set I of disjoint time
intervals. During each interval Ii ∈ I there is a subset J (Ii) ⊆ J of alive jobs
and a subset P(Ii) ⊆ P of available processors. Every job Jj ∈ J (Ii) (and
processor Pp ∈ P(Ii)) is alive (resp. available) during the whole Ii. We denote
by ni = |J (Ii)| (and ai = |P(Ii)|) the number of alive jobs (resp. available
processors) during Ii. Our original problem is a special case of the above; we
observe that Jj is alive during every interval Ii ∈ [rj , dj) and all the m processors
are available in each interval. Moreover, the optimal structure of the previous
section is extended in a straightforward way to this more general problem.

Let S∗ be an optimal schedule with the structure presented in the previous
section and consider an interval Ii ∈ I. By Property 4, the mi = min{ai, ni}
cheapest processors are used during the entire Ii while the remaining ones are
always idle during Ii. So, the property specifies the exact amount of time, say tp,
that each processor Pp ∈ P is used in S∗ as well as the corresponding intervals.
A similar argument with the one for proving Property 1 implies that the most

11

energy-efficient, though not necessarily feasible, way to schedule the jobs is by
executing them with the same hypopower Q such that

m∑
p=1

tp

(
Q

αp

) 1
αp−1

=
∑
Jj∈J

wj (2)

In what follows, we assume that we can compute a solution to the above equation
with arbitrary precision (we explain later how to treat errors occurred due to
limited precision). If there is a feasible schedule in which all jobs are executed
with equal hypopower Q, then this schedule is optimal and we are done. Note
that, as we explain in the next subsection, this feasibility problem can be
answered with a maximum flow computation. If such a feasible schedule does not
exist, then J can be partitioned into two disjoint and non-empty subsets J≥Q
and J<Q containing the jobs executed with hypopower at least Q and smaller
than Q, respectively, in S∗. In each interval Ii ∈ I, Properties 2 and 3 specify
the subsets of available processors P≥Q(Ii),P<Q(Ii) ⊆ P(Ii) dedicated to the
execution of J≥Q and J<Q, respectively, which are disjoint. Specifically, let
J≥Q(Ii) and J<Q(Ii) be the subsets of jobs of J≥Q and J<Q, respectively, which
are alive during Ii. The jobs in J≥Q occupy the cheapest min{ai, |J≥Q(Ii)|}
processors during Ii while the jobs in J<Q use the remaining occupied processors.
Then, the problem < J ,P, I > can be decomposed into the two independent
sub-problems < J≥Q,P≥Q, I > and < J<Q,P<Q, I >. Therefore, < J ,P, I >
can be decomposed recursively as it is described in Algorithm 1.

Algorithm 1: Opt(J ,P, I)

1 Compute the most energy-efficient hypopower Q for executing (J ,P, I);
2 (J≥Q,P≥Q, I), (J<Q,P<Q, I)← Biseparation(J ,P, I, Q);
3 if J = J≥Q then
4 return ConstantHypopowerSchedule(J ,P, I, Q);

5 else
6 S≥Q ← Opt(J≥Q,P≥Q, I);
7 S<Q ← Opt(J<Q,P<Q, I);
8 return S≥Q ∪ S<Q;

In order to complete the presentation of our algorithm, it remains to describe
a way of answering the feasibility of the problem < J ,P, I > in which all jobs
are executed with constant hypopower Q (which has been computed according
to Equation 2) and, in the case of infeasibility, the biseparation procedure.

4.2.2. Feasibility.

Consider an interval Ii ∈ I and a processor Pp ∈ P(Ii). Recall that,
if processor Pp runs with hypopower Q during Ii, then its speed is si,p =

(Qαp)1/(αp−1). For simplicity, in what follows, we slightly abuse our notation: let

12

si,p be the speed of the p-th cheapest (and fastest) available processor during Ii,
and P(Ii) be the set of the mi cheapest available processors during Ii.

The feasibility of < J ,P, I > w.r.t. the hypopower Q is based on a maximum
flow computation in an appropriate network N (J ,P, I, Q) which is defined as
follows (see Fig. 1). There is a source node u0, a node uj for each job Jj ∈ J ,
a node vi,p for each pair of interval Ii ∈ I and processor Pp ∈ P(Ii), a node
vi for each interval Ii ∈ I and a destination node v0. Moreover, the network
contains the arc (u0, uj) with capacity wj for each job Jj ∈ J , the arc (uj , vi,p)
with capacity (si,p − si,p+1)|Ii| for each interval Ii, job Jj ∈ J (Ii) and processor
Pp ∈ P(Ii), the arc (vi,p, vi) with capacity p(si,p − si,p+1)|Ii| for each interval
Ii ∈ I and processor Pp ∈ P(Ii) as well as the arc (vi, v0) with infinite capacity
for each Ii ∈ I. By convention, let si,mi+1 = 0. This formulation was introduced
by Federgruen and Groenevelt [13] and the following theorem is a corollary
of [13].

u0

u1

...

uj

...

un

v1,1

...
v1,m1

...

vi,1

...

vi,p

...
vi,mi

...

v1

...

vi

...

vn

v0

w1

wj

wn

(si,1 − si,2)|Ii|

(si,p − si,p+1)|Ii|

(si,mi
− si,mi+1)|Ii|

1 · (s1,1 − s1,2)|I1|

m1 · (s1,m1
− s1,m1+1)|I1|

1 · (si,1 − si,2)|Ii|

p · (si,p − si,p+1)|Ii|

mi · (si,mi − si,mi+1)|Ii|

∞

∞

∞

Figure 1: The flow network N (J ,P, I, Q)

Theorem 3. There exists a feasible schedule of < J ,P, I > with constant
hypopower Q iff there exists a feasible flow in N (J ,P, I, Q) of value

∑
Jj∈J wj .

Theorem 3 implies that any feasible schedule for < J ,P, I, Q > can be
transformed to a feasible flow of value

∑
Jj∈J wj in the network N (J ,P, I, Q)

and vice versa. In particular, consider a feasible schedule, an interval Ii ∈ I and
assume that wi,j,p = t · si,p units of work of job Jj ∈ J (Ii) are processed by the
p-th fastest processor in P(Ii). Then, it holds that

wi,j,p = t · si,p = t · (si,p − si,p+1) + t · (si,p+1 − si,p+2) + . . .+ t · (si,mi − smi+1)

This observation shows the way for obtaining a feasible flow of value
∑
Jj∈J wj .

Conversely, consider a feasible flow, an interval Ii ∈ I, a job Jj ∈ J (Ii) and

13

assume that wi,j units of flow cross the network induced by the nodes uj , vi
and vi,p for each p = 1, 2, . . . ,mi. By applying the algorithm of Gonzalez and
Sahni [15] for scheduling a set of jobs (where job Jj has work wi,j) with common
release dates and deadlines on related machines, we obtain a feasible schedule.

4.2.3. Biseparation.

If there is not a feasible schedule for < J ,P, I > with constant hypopower
Q computed by Equation (2), we next show how to decompose the problem
into two subproblems (J<Q,P<Q, I) and (J≥Q,P≥Q, I). Initially, we introduce
some notation. Consider an optimal schedule S∗ with the structure presented in
Section 4.1. We refer to every job Jj ∈ J≥Q, i.e., job executed with hypopower
at least Q, as critical. By Corollary 1, during interval Ii ∈ I, the critical jobs
occupy the ci = min{mi, |J≥Q(Ii)|} fastest processors in S∗. In the network
N (J ,P, I, Q), we denote by U(x, y) the capacity of the arc (x, y). Moreover,
given a feasible (u0, v0)-flow F , let F(x, y) be the amount of flow crossing the
arc (x, y). Our biseparation algorithm is based on the following lemma.

Lemma 6. Let J ′ ⊆ J<Q be any subset of non-critical jobs. A job Jj ∈ J \J ′ is
critical if and only if, in the network N (J \J ′,P, I, Q), there exists a minimum
(u0, v0)-cut which does not contain the arc (u0, uj).

Proof. For simplicity, we prove the lemma for J ′ = J<Q. The proof can be
easily extended for any subset J ′.

Let S∗ be an optimal schedule for < J ,P, I > with the structure presented
in the previous section. We denote by s∗i,p the speed of processor Pp ∈ P(Ii)
during interval Ii ∈ I in S∗. Moreover, let (i, j, p) be the entire piece of job
Jj ∈ J (Ii) executed on processor Pp ∈ P(Ii) during interval Ii ∈ I in S∗ and
note that this piece might not be executed consecutively during Ii. Assume that
w∗i,j,p and t∗i,j,p are the total amount of work and the total processing time of
the piece (i, j, p). By definition, w∗i,j,p = s∗i,p · t∗i,j,p. For each interval Ii ∈ I, we
denote by si,p the speed of processor Pp ∈ P(Ii) if it runs with hypopower Q,

i.e. si,p = (Qαp)1/(αp−1).

We modify S∗ and obtain a new schedule S as follows. For each piece (i, j, p)
such that Jj is critical (that is s∗i,p ≥ si,p), we decrease its speed s∗i,p down to si,p
without changing its processing time; this modification implies that less work
is now executed for Jj , except if it was originally executed with speed exactly
si,p in S∗. For each piece (i, j, p) such that Jj is non-critical (i.e. s∗i,p < si,p), we
increase its speed s∗i,p up to si,p without changing the amount of work executed
for it, which means that its processing time has become smaller. If we ignore
the fact that there exist some critical jobs which are not entirely executed, we
observe that the resulting schedule S is a valid schedule. That is, by applying
the transformation of Federgruen and Groenevelt [13] it can be converted into a
feasible flow F in the network N (J ,P, I, Q).

We show that F is a maximum (u0, v0)-flow in N (J ,P, I, Q) by presenting a
(u0, v0)-cut C of the same value. This cut contains the arc (vi,p, vi) for Ii ∈ I and

14

p = 1, . . . , ci, the arc (uj , vi,p) for Ii ∈ I, p = ci + 1, . . . , ai and Jj ∈ J≥Q(Ii),
the arc (u0, uj), for Jj ∈ J<Q. Moreover, its value is equal to

∑
Ii∈I

ci∑
p=1

U(vi,p, vi) +
∑

Jj∈J≥Q(Ii)

∑
Ii∈I

mi∑
p=ci+1

U(uj , vi,p) +
∑

Jj∈J<Q

U(u0, uj)

=
∑
Ii∈I

ci∑
p=1

p(si,p − si,p+1)|Ii|+
∑

Jj∈J≥Q(Ii)

∑
Ii∈I

mi∑
p=ci+1

(si,p − si,p+1)|Ii|+
∑

Jj∈J<Q

wj

=
∑
Ii∈I

(
|Ii|

ci∑
p=1

si,p − |Ii| · ci · si,ci+1

)
+
∑
Ii∈I

mi∑
p=ci+1

ci(si,p − si,p+1)|Ii|+
∑

Jj∈J<Q

wj

=
∑
Ii∈I

ci∑
p=1

si,p|Ii| −
∑
Ii∈I

ci · si,mi+1 +
∑

Jj∈J<Q

wj

=
∑
Ii∈I

ci∑
p=1

si,p|Ii|+
∑

Jj∈J<Q

wj

By Corollary 1, in S∗, the ci fastest processors are fully occupied by critical jobs
during Ii ∈ I. This also holds for the schedule S because the processing time of
a critical job is not modified. Therefore, after the transformation of Federgruen
and Groenevelt [13], we get that

∑
Jj∈J≥Q F(u0, uj) =

∑
Ii∈I |Ii|

∑ci
i=1 si,p. On

the other hand, every non-critical job is entirely executed in S which means
that

∑
Jj∈J<Q F(u0, uj) =

∑
Jj∈J<Q wj . Hence, the sizes of F and C are indeed

equal. That is, F is a maximum (u0, v0)-flow and C is a minimum (u0, v0)-cut.
Now, we are ready to complete the proof of the lemma. For each critical

job Jj , there exists the minimum (u0, v0)-cut C which does not contain the arc
(u0, uj). On the other hand, if Jj is non-critical, by construction of the schedule
S, its processing time during each interval Ii ∈ [rj , dj] is strictly smaller than
|Ii|. That is, after the transformation of Federgruen and Groenevelt [13], there is
at least one interval Ii ⊆ [rj , dj] (any of the intervals during which Jj is executed
in S) such that neither the arc (uj , vi,mi), nor the arc (vi,mi , vi) is saturated
by F which means that none of these two arcs can belong to any minimum
(u0, v0)-cut. Thus, (u0, uj) must belong to every minimum (u0, v0)-cut. �

We define the residual network RF (J ,P, I, Q) of N (J ,P, I, Q) with respect
to F as the network which contains the same nodes with N (J ,P, I, Q), the
arc (x, y) with capacity U(x, y) − F(x, y), if (x, y) is not saturated by F in
N (J ,P, I, Q) and the arc (y, x) with capacity F(x, y), if there is a positive
amount of flow F(x, y) > 0 crossing the arc (x, y) by F in N (J ,P, I, Q). Then,

we define the inverse residual network R̃F (J ,P, I, Q) which is the same as
RF (J ,P, I, Q) except that all arcs are reversed. Algorithm 2 formally describes
the biseparation procedure.

Lemma 7. Algorithm 2 correctly identifies J<Q and J≥Q.

15

Algorithm 2: Biseparation(J ,P, I, Q)

1: J≥Q = J and J<Q = ∅;
2: Find a maximum flow F in the network N (J≥Q,P, I, Q);

3: while there is a path from v0 to some job node uj in R̃F (J≥Q,P, I, Q) do
4: J≥Q = J≥Q \ {Jj} and J<Q = J<Q ∪ {Jj};
5: Remove the flow passing through uj from F and uj from

N (J≥Q,P, I, Q);
6: Compute P≥Q and P<Q based on Corollary 1;
7: return (J≥Q,P≥Q, I), (J<Q,P<Q, I);

Proof. Before proving the correctness of the biseparation algorithm, we need
to make an observation. Consider the maximum (u0, v0)-flow computed by the
algorithm in the network N (J≥Q,P, I, Q) and let J ′ ⊆ J<Q be a subset of
non-critical jobs. We observe that, if we remove the flow crossing the node uj
for each job Jj ∈ J ′, then the resulting flow is a maximum (u0, v0)-flow in the
network N (J≥Q \ J ′,P, I, Q). This is true because the value of the new flow is
equal to the value of the (u0, v0)-cut defined in a similar way with the cut C in
the proof of Lemma 6.

Let us now prove the lemma. We claim that it is not possible to remove a
critical job in any iteration of Algorithm 2. Assume for contradiction that we
remove such a job in some iteration. We consider the first iteration that this
happens. Let J ′ and Jj be the remaining set of jobs when the iteration starts
and a removed critical job, respectively. By Lemma 6, there exists a minimum
cut C in N (J ′,P, I, Q) which does not contain the edge (u0, uj). Clearly, the
cut C contains either the arc (uj , vi,p), or the arc (vi,p, vi) for each Ii ∈ I and
p = 1, 2, . . . , ai, and this arc is necessarily saturated by the maximum flow F .
Hence, the node uj cannot be reached from v0 in R̃F (J ,P, I, Q).

Finally, we claim that, in each iteration, if there are remaining non-critical
jobs, at least one of them is identified. Consider an iteration in which J ′ is
the remaining set of jobs when the iteration starts and suppose that J≥Q ⊂ J ′.
Assume for contradiction that the algorithm removes no job. Then, every arc
(uj , vi,p) and every arc (vi,p, vi) of the network N (J ′,P, I, Q) are saturated
which means that there exists a min cut not containing the arc (u0, uj) for every
remaining non-critical job. This is a contradiction to Lemma 6. �

4.2.4. Correctness and Running Time.

The correctness of the algorithm follows from the fact that it produces a
schedule satisfying Properties (1)-(4). Assume that by solving Equation (2), we
get a solution Q + ε instead of Q, where ε > 0 is a small constant. If all jobs
are executed with hypopower Q in the optimal schedule, then the algorithm
will construct a feasible schedule in which all jobs are executed with hypopower
Q+ ε. On the other hand, if there does not exist a feasible schedule of all jobs
w.r.t. Q, then the algorithm will perform a biseparation w.r.t. Q + ε. Even

16

though this biseparation is performed w.r.t. Q+ ε, it is correct in the sense that
a job is characterized as critical if and only if it is executed with hypopower
at least Q+ ε in the optimal schedule. Therefore, the algorithm will produce
a (1 + ε′)-approximate schedule in which, at each time, the hypopower of a
processor is at most an additive factor of ε more than its hypopower in the
optimal schedule, where ε′ > 0 is a small constant.

Concerning its running time, it makes O(n) recursive calls because there are
O(n) distinct values of hypopower in the optimal schedule. In every such call, it
computes a hypopower value by solving Equation (2) in O(f(n, 1ε)) time, where
ε is the desired accuracy, it computes a maximum flow in a graph with O(nm)
vertices in O(g(nm)) time and it performs O(n) Breadth-First Searches in a
graph with O(n2m) arcs in O(n3m) time.

Theorem 4. Algorithm 1 produces a (1 + ε′)-approximate schedule with running
time O(nf(n, 1ε) + ng(nm) + n4m).

5. Online Scheduling with Heterogeneous AVR

For the single-processor case, Yao et al. [20] proposed the AVerage Rate
algorithm (or simply AVR) and they showed that it is αα · 2α−1-competitive for
standard power functions of the form f(s) = sα. AVR sets the processor’s speed
at each time t equal to the total density of the alive jobs at t, i.e.,

∑
Jj∈J (t) δj .

Then, it schedules the jobs according to the Earliest Deadline First (EDF) policy.
In order to generalize AVR to the multiprocessor setting, we consider a

variation of the single-processor AVR algorithm which assigns exactly the same
speed to the processor at each time t but it follows a different job selection
policy. Without loss of generality, we assume that all release dates and deadlines
are integers. Assume also that rmin = min{rj : Jj ∈ J } = 0 and let dmax =
max{dj : Jj ∈ J } = T be the maximum deadline among the released jobs. We
can partition the time horizon into unit-size intervals of the form It = [t, t+ 1),
0 ≤ t < T . In particular, for each job Jj ∈ J (It), the algorithm assigns
δj =

wj
dj−rj work of Jj to the interval It, and then it produces an arbitrary

schedule of the total work assigned to It using constant speed
∑
Jj∈J (It)

δj
during the whole It. The above variation achieves the same competitive ratio as
the original AVR algorithm proposed in [20], since they both follow the same
speed assignment rule and hence they have the same energy consumption.

We now turn our attention to the case of multiple heterogeneous processors.
Based on the previous variation, we say that a schedule S is an AVR-schedule if
for every job Jj ∈ J and interval It ⊆ [rj , dj) the total amount of work of Jj
executed during It on all processors in S is exactly equal to δj . The following
lemma provides a lower bound on the optimal offline solution.

Lemma 8. There exists a feasible AVR-schedule SAVR for the heterogeneous
speed-scaling problem with arbitrary power functions such that E(SAVR) ≤
(maxPp∈P{ρp}+ 1)OPT , where ρp is the competitive ratio of the single-processor
AVR algorithm when it is applied to the processor Pp with power function fp(s).

17

Proof. Let S∗ be an optimal offline schedule. We denote by S∗p the part of S∗
which corresponds to the processor Pp. In other words, S∗ is the concatenation
of S∗p ’s. Let w∗j,p and s∗j,p be the amount of work and the corresponding speed
of job Jj on processor Pp, respectively, in S∗. For each Pp ∈ P, we modify
S∗p to Sp by applying the variation of the single-processor AVR algorithm; the
work executed for each Jj ∈ J in Sp is equal to w∗j,p. Let S be the resulting
schedule, i.e., the concatenation of Sp’s. Moreover, let wj,p,t and sj,p,t be the
amount of work and the corresponding speed of job Jj on processor Pp during It,
respectively, in S. Finally, we modify S by setting the speed of the piece of Jj
executed by Pp during It equal to max{s∗j,p, sj,p,t} and we denote the obtained
schedule by SAV R.

The total amount of work executed for Jj during It in SAV R is equal to∑
Pp∈P

wj,p,t =
∑
Pp∈P

w∗j,p
dj − rj

=
wj

dj − rj
= δj

Thus, SAV R is an AVR-schedule.
The total processing time of all the pieces of Jj during It in SAV R is equal to

∑
Pp∈P

w∗j,p
dj−rj

max{s∗j,p, sj,p,t}
≤ 1

dj − rj

∑
Pp∈P

w∗j,p
s∗j,p

≤ 1 = |It|

where the last inequality follows because S∗ is feasible. By Lemma 2, we conclude
that SAV R can be constructed to be feasible.

In SAV R, the speed of the piece of Jj executed by Pp during It is equal either
to the speed that the piece has in S∗ or to the speed that it has in S. Therefore,
the energy consumption of SAV R is

E(SAV R) =
∑
Pp∈P

∑
Jj∈J

T−1∑
t=0

∫
It

max{fp(s∗j,p), fp(sj,p,t)}

≤
∑
Pp∈P

∑
Jj∈J

T−1∑
t=0

∫
It

fp(s
∗
j,p) +

∑
Pp∈P

∑
Jj∈J

T−1∑
t=0

∫
It

fp(sj,p,t)

= E(S∗) +
∑
Pp∈P

E(Sp)

For each Pp ∈ P, let S̃p be an optimal offline schedule for Pp in which for
each job Jj ∈ J an amount of work w∗j,p is executed. Therefore, given that
the single-processor AVR algorithm is ρp-competitive when it is applied to the
processor Pp with power function fp(s), we have that

E(SAV R) ≤ E(S∗) +
∑
Pp∈P

ρpE(S̃p) ≤ E(S∗) + max
Pp∈P

{ρp}
∑
Pp∈P

E(S̃p)

≤ E(S∗) + max
Pp∈P

{ρp}
∑
Pp∈P

E(S∗p) = E(S∗) + max
Pp∈P

{ρp}E(S∗)

= (max
Pp∈P

{ρp}+ 1)E(S∗)

18

where the last inequality follows by the optimality of S̃p and the fact that the

amount of work of each job Jj ∈ J is the same on both S̃p and S∗p . �

We are now ready to describe our algorithm. The high level idea is that we
create a (1 + ε)-approximate AVR-schedule, by using the algorithm proposed in
Section 3. More specifically, given the assignment of work into intervals implied
by the definition of the AVR-schedules, for each interval It = [t, t+ 1) we create
an offline (1 + ε)-approximate schedule for this subinstance of the heterogeneous
speed-scaling problem. We call this algorithm Heterogeneous-AVR (or simply
H-AVR). Note that, if the time t+ 1 does not correspond to a release date or a
deadline then the schedules for the intervals It and It+1 are the same, and hence
we have to compute it only once. The following theorem follows.

Theorem 5. H-AVR is a ((1 + ε)(maxPp∈P{ρp}+ 1))-competitive algorithm for
the heterogeneous speed-scaling problem, where ρp is the competitive ratio of the
single-processor AVR algorithm when it is applied to the processor Pp with power
function fp(s).

For the case of standard power functions of the form f(s) = sα, the single-
processor AVR algorithm is αα2α−1-competitive [20]. Therefore, the following
corollary holds.

Corollary 2. H-AVR is a ((1 + ε)(αα2α−1 + 1))-competitive algorithm for the
heterogeneous speed-scaling problem for standard power functions of the form
fp(s) = sαp , where α = maxPp∈P{αp}.

[1] S. Albers, A. Antoniadis, and G. Greiner. On multi-processor speed scaling
with migration. J. Comput. Syst. Sci., 81(7):1194–1209, 2015.

[2] S. Albers, F. Müller, and S. Schmelzer. Speed scaling on parallel processors.
Algorithmica, 68(2):404–425, 2014.

[3] E. Angel, E. Bampis, F. Kacem, and D. Letsios. Speed scaling on parallel
processors with migration. In Euro-Par, volume 7484 of LNCS, pages
128–140. Springer, 2012.

[4] A. Antoniadis, and C.-C. Huang. Non-preemptive speed scaling. J. Schedul-
ing, 16(4):385–394, 2013.

[5] E. Bampis, A. V. Kononov, D. Letsios, G. Lucarelli, and I. Nemparis. From
preemptive to non-preemptive speed-scaling scheduling. Discrete Applied
Mathematics, 181:11–20, 2015.

[6] E. Bampis, A. V. Kononov, D. Letsios, G. Lucarelli, and M. Sviridenko. En-
ergy efficient scheduling and routing via randomized rounding. In FSTTCS,
volume 24 of LIPIcs, pages 449–460. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2013.

[7] E. Bampis, D. Letsios, and G. Lucarelli. Green scheduling, flows and
matchings. Theor. Comput. Sci., 579:126–136, 2015.

19

[8] N. Bansal, D. P. Bunde, H.-L. Chan, and K. Pruhs. Average rate speed
scaling. Algorithmica, 60(4):877–889, 2011.

[9] N. Bansal, H.-L. Chan, and K. Pruhs. Speed scaling with an arbitrary
power function. ACM Transactions on Algorithms, 9(2):18, 2013.

[10] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and
temperature. J. ACM, 54(1), 2007.

[11] B. D. Bingham and M. R. Greenstreet. Energy optimal scheduling on
multiprocessors with migration. In ISPA, pages 153–161, 2008.

[12] J.-J. Chen, H.-R. Hsu, K.-H. Chuang, C.-L. Yang, A.-C. Pang, and T.-
W. Kuo. Multiprocessor energy-efficient scheduling with task migration
considerations. In ECRTS, pages 101–108. IEEE Computer Society, 2004.

[13] A. Federgruen and H. Groenevelt. Preemptive scheduling of uniform ma-
chines by ordinary network flow techniques. Management Science, 32(3):341–
349, 1986.

[14] T. Gonzalez and S. Sahni. Open shop scheduling to minimize finish time.
J. ACM, 23(4):665–679, 1976.

[15] T. Gonzalez and S. Sahni. Preemptive scheduling of uniform processor
systems. J. ACM, 25:92–101, 1978.

[16] A. Gupta, S. Im, R. Krishnaswamy, B. Moseley, and K. Pruhs. Scheduling
heterogeneous processors isn’t as easy as you think. In SODA, pp. 1242–1253,
2012.

[17] A. Gupta, R. Krishnaswamy, and K. Pruhs. Scalably scheduling power-
heterogeneous processors. In ICALP, volume 6198, pages 312–323. Springer,
2010.

[18] S. Im, and M. Shadloo. Brief announcement: A QPTAS for non-preemptive
speed-scaling. In SPAA, pp. 207–209, 2016.

[19] M. Li, A. C. Yao, and F. F. Yao. Discrete and continuous min-energy
schedules for variable voltage processors. PNAS, 103(11):3983-3987, 2006.

[20] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU
energy. In FOCS, pages 374–382, 1995.

20

